Easy Leaming Using lcons

m Easy programming even for the novices using Drag & Drop method

®m | earn C language grammar using C—Like

(Download manuals &
applications.) www.dongburobot.com

= Dongbu Robot

Easy Learning with Icons
Visual Logic
Robot Programming

1st Edition published date :

Publisher : Dongbu Robot Co., Ltd

Address : 11th FI Bucheon Techno Prk Bldg, 401, Yakdae—dong, Wonmi—gu, Bucheon—si, Gyeonggi—do, S Korea
Customer Inquiry : 032—329-5551

FAX : 032—-329-5569

No portion of this purblication may be reproduced or transmitted in any form without prior written authorization
from Dongbu Robot Co., Ltd.

Dongbu Robot Co.,Ltd All rights reserved

Contents

PART

Hovis Lite Introduction

Outline
DRC Battery Installation Method

DRC Connection Method

DRC Interface

DRC Register Protocol

Using DRC Functions

DRC Standard Test

Servo Motor --

Light Sensor ----

Sound Sensor ---============mmmmmmsmmeemmeemeeeeeeo oo

Distance Sensr (Analog, Digital)

Gyro Sensor

Hovis Lite Structure Diagram

Hovis Lite Parts List

Humanoid Assembly Diagram
Using Humanoid DRC Functions

PART

DR-SIM

DR-Visual Logic

Move

Motor

LED Button

Light

Sound1

Sound2

Digital

Analog

Acc

IR Receive, Sound & Motion

Appendix

DRC Register & Protoco

Register

Protocol

Appencix

Useful Info

Toubleshooting

Calibration (Robot 0 Point)

Changing Motor ID

PART ()1

Donbu Robot
DRC & Humanoid

B Introduction HOVIS
Ol Hovis Lite Introduction

Introducing Hovis Lite.

Choice of Colors

Use four different colored brackets to create your own unique
humanoid robot. Hovis Lite is the first robot in the world that
can be upgraded with external body case, omni wheel, and an-
droid terminal.

DR-Visual Logic (Task Editor)

To program the robot based on the controller (DRC), Hovis Lite
is supplied with 24 modules and a graphic programming lan-
guage tool DR-Visual Logic that uses drag & drop method. Even
the novice users without any prior knowledge of programming
language would find DR-Visual Logic easy to use.

T e T Al T e 7 - | o e

DR-SIM (Motion Editor)

DR-SIM is a robot motion editor that incorporates ‘time frame’
feature found in the video editors. DR-SIM allows the user to
create robot motions on screen, to capture motions from the
robot, view user created motion simulations on screen, and to
download and apply the created motion to the robot for execu-
tion.

»
o
-
L

[k]

Choice of four different colored brackets

Assemble up to 27 different types of robot
Upgradable by external body case type

Android terminal and programming interface included

Source supplied

Curriculum supplied

[]
. Download Program/Manual :
Related Site

www. hovis.co.kr/guide
www.dongburobot.com = English = Customer support = For Services —» Archives
www.dongburobot.com = Quick Menu — For Service = Archives

10 ponEEE

s Controller HOVIS
N8 Overview

DRC Controller is the main component and brain of the Hovis Lite. Controller has variety of connectors and interfaces includ—
ing 6 servo motor ports, 2 PSD sensor ports, Gyro sensor, and ZigBee interface. Light sensor and the sound sensor in built—
in to the controller, DR—Visual Logic program is a visual robot programming language that uses DRC functions to program
the robot. Various sensors and 1~32 motors can be programmed and tested.

IR receiver

. Sound sensor |

CPU ATMega 128

Size, Weight 108 x 58.5 x 33 (mm), 82 g

Operating Voltage Tolerance Range : 6,5V ~ 10V, Recommended Voltage : 7.4V
Serial Speed 115,200 bps ~ 666,667 bps

Consumed Current When IDLE : 50mA, Overall Max Current : 3A (PTC Fuse)
Interface Button : 6ea, MIC : 2ea, LED : 7ea

External I/O Servo Motor : 6ea, PSD Sensor : 2ea

Back Cover 1/O ZigBee : 1ea, Gyro Sensor : lea

Internal 1/O Sound Sensor : 2ea, Light Sensor : lea

e 11

B Controller HOVIS
0N} DRC Battery Installation

Battery Connected Directly
\L J

® Battery
To supply power to the DRC, connect the battery to controller by the power connector found at bottom.

= Battery Charging
Battery can be charged directly using the battery cable and the adapter. Another charging method is to connect the adapter
to the adapter connector found at top of the controller. Battery installed on the controller will start to charge automatically
when the adapter is connected to the controller.

B Low Battery
Power LED will start to blink when the battery level
falls below 20%.

s Controller HOVIS
M DRC Connection

5 IR receiver

' Sound sensorl

€D Motor Connection
There are five ports around the controller

) ZigBee Connection

Open the controller cover and install internally.

) Distance Sensor Connection

6 IR Receiver Connection
There are two ports, one on each side.

1 port, used for receiving remote control signal.

&) Gyro Sensor Connection
Open the controller cover and install internally.

(3 Download Connection

Ear phone Jack connection used to downolad program
from PC to the robot.

e 13

B Controller
08} DRC Interface

HOVIS

DRC controller has Input/Output buttons and LEDs at the front and motor and sensor ports at the back. Interface buttons at

the front are used to give input commands the LEDs are used to verify data output.

| Name | ShortCut | Standard Task Mode

Mode
Main Button
Ok

(Left)

(Up)
Navi Key

(Right)
(Down)
Servo
Program
EXEC

LED X
RX

Spare
Power

Sensor Cds

Run Task
Confirm

Battery Level
DRC Self Test

Switch wired/wireless com
Motor ID Scan
HerkuleX Running
DR-SIM/Visual Logic Running
Task Running
Data Transmit
Data Receive
User Defined
Power

Light Sensor

Check Mode

Autonomous Movement

Mode

Remote Control Mode

Sound Demo Mode

14 pcunEEE

s Controller HOVIS
0N} DRC Register Map

® Register

DRC has a registers which contains current controller state, settings, and various sensor related data.

For example, number of motors connected to the robot and their ID, error status, and current error codes are all part of cur—
rent controller state. Controller settings include such data as Min/Max input voltage, Ack Policy, and etc. Sensor readings

such as luminosity detected by the light sensor and location of the detected sound are part of sensor data.

Controller register is divided into (Non—Volatile, EEPROM) register and (Volatile, RAM) register. Non—\olatile registers retain
data even when the power has been turned off and contain basic sestup values pertaining to the controller operation, Val—
ues in the Non—\olatile registers are copied to Volatile registers as soon as the power is turned on. Volatile registers contain

controller settings, state, and sensor values, Data in the Volatile registers have direct effect on the operation of the controller.

Knowing the content of the the registers and how the content changes allow the user to write more refined robot motion
progam using DR—Visual program. Knowledge about registers also help the user to read the the controller status and to

change the operatonal settings, making robot operation more convenient,

@ Protocol
Protocol is a predefined format or rules for commands that are given to read or write to registers. Protocol is defined not only
for read/write commands but also for other commands such as run commands for running saved tasks or sounds , reboot

command for rebooting the controller, and host of other commands.
Communication between the PC and the controller use such predefined protocols to send and receive packets. DR-SIM and
DR-Visual prgrams provided by Dongbu Robot were also created using such protocols. User should become familiar with

the protocols in order to controll the DRC using their custom made programs,

Refer to DRC Regisers and Protocols section in the manual for more information,

e 15

B Controller HOVIS
WMl DRC Funcitons

€D Program Overview
Firmware : Internal program that cannot be modified by the user.
Task : User defined prgram that can be modified using the Task Editor (DR—Visual Logic).

At the time of release, basic humanoid Task Program is defined. Program can be modified by the user.

@) Operating Method
Basic functions in the firmware will start to operate when power is turned on and Navi key pressed. Pressing the Mode

button will run the saved task. From running a basic task, press the Navi key and OK after the task to select which mode to go into

Firmware (Cannot be changed by the user)

n Navi button click g Mode or Navi click B Controller self test

Task Mode (Can be changed by the user)

€D Modeclick [Navi click E) ok click

a Robot control
+ + + test

16 pum

s Controller HOVIS
Ml DRC Functions

6 Operation & Functions

Start Task
_ D Mode Mode Change For standard Task, Mode—® Navi key — Ok (to select operating
Main Button mode)
Q OK Confirm button
Battery level check — Shown by 3 left LED, low 17H LED, medium
<> (L) Battery level check

2 LED, high 3 LED

Navi Key Motor & sensor test using the controller
(Firmware) @ (Up) Test Method : (Up) — Button — Test according to motor response
from sensor Test : Motor/Light/Sound/Distance/Accel/Gyro

<> (R) Wired/Wireless Wired using Ear phone jack / Wireless using ZigBee
@ (Down) Motor ID Scan Rescan connnected motor ID

Mode — (L) —» Ok : Check Mode : Individual motors, Arm/Le
<> WL Check Mode & vicu /leg

module connection and assembly check.

Mode —® (Up) = Ok : Autonomous Mode : Robot operates by
@ (Up) Autonomous Mode

Navi Key itself.
(Basic Task Mode = (R) = Ok : Remote Control Mode: Run predefined motion
for Humanoid) <> (R) Remote Control Mode

saved in the remote control.

Mode —» (Down) = Ok : Sound Demo Mode : Run motions based

@ (Down) Sound Dem Mode
on sound input,

Servo HerkuleX running Blinks when HerkuleX Manager is in operation
DR-SIM/Visual Logic Blinks when DR—SIM / Visual Logic is being used for editing.
Program . . .
running LED on when downloading data or firmware
On while the task is running when Task mode is entered using
EXEC Mode chage/Task
the mode button.
LED_mode TX Data Transmit Blinks when transmitting data, User spae when task in operation.
RX Data Receive Blinks when receiving data, user spae when task in operation.
Spare User Defined
LED Blink Error 3 right side LEDs will blink when in error
LED_Power Power Power level Blinks when battery level is below 20%
Sensor Cds Light Sensor Light sensor

e 17

B Controller HOVIS
08} DRC Basic Test

DRC is capable of running basic tests through the test mode even when the robot is not assembled. Proceed with the mo—
tor and sensor test by turning on the power and pressing the (up) button. Sensor test is performed by checking the motor
response from the motors ID1 and 2 attached to left and right. Tests can be performed for motor, light sensor, sound sensor,

distance sensor, and gyro sensor, Testing methods are as follows.

Light sensor and sound sensor tests are done by menu and OK as they are built in to the controller
For PSD, Acc/Gyro, pressing the (down) button will check to see if only one of the sensor is connected. Test will pro-
ceed if only one sensor is connected and stop if more than one sensor is connected.

n Motor : Connect motors to the left and right(No 1 on left, No 2 on right)
(Up) =P (L) : left motor will move, (R) right motor will move, (Up) both motors will move .

) Lighte Sensor : (Up) = (Menu) : Light sensor in operation, Both motors will move when Cds blocked

) Sound Sensor : (Up) = (OK) : Sound Sensor in operation,
Clap from left, left motor will move,
Clap from right, right motor will move

Functions below will operate when (Down) button is pressed after connecting the sensor. Only the sensor to be tested
should be connected as testing will not work if more than one sensor is connected.

a PSD Digital : (Up) = Connect digital distance sensor= (Down) PSD in operation
When object moves within 10cm —» Both motors will move
When object moves beyond 10cm (cliff detection) = Both motors will stop
—> Cliff detection

@ PSD Analog : (Up) = Connect analog PSD sensor =% (Down) PSD in operation
Both motors will turn in same direction. Farther the object, faster the motor movement
Movement will slow when object comes closer = When object is <10 cm, motors will move in
opposite direction.
— Collision avoidance after wall/object detection

(3 Acc * (Up) = Connect Acc/Gyro =¥ (Down) Acc in operation
Motors stopped when the controller angle is same as when the robot is standing straight.
Motor speed will vary depending on the angle. The greater the angle faster the movement.
Gyro : (Up) = Connect Acc/Gyro —» (Down) Acc in operation = (Down) Gyro in operation

No motore movement when the controller is not moving.
Motor moves at approximately the same speed as the revolving controller.

Follow the detailed test instructions below,

18 o

s Controller HOVIS
NN DRC Basic Test : Servo Motor

€D Connect the battery
@ Turn on the power
9 Connect left motor : Make sure to connect Motor ID 1 .(Other motors will not operate.)
a Connect right motor : Make sure to connect Motor ID 2 .(Other motors will not operate.)
Place the motor outward to test. Simulates wheels turning.
—> Test Process

e Turn on power, Press (Up) button to enter Test Mode

o Press Navi Key (L) button. = Left motor will turn.

o Press Navi Key 2| (R) button. = Right motor will turn.

o Press Navi Key (Up) button. = Both motors will turn in forward direction.

Motors are operating without error if they worked according to the directions above, Results of all following tests will be
shown by how the two motors behave. Do not disconnect the motors and continue on with sensor tests.

e 19

B Controller HOVIS
W} DRC Basic Tes : Light Sensor

€D Connect Battery

@ Turn on the power

9 Connect left motor : Make sue to connect Motor ID 1. (Other motors will not operate.)
a Connect right motor : Make sure to connect Motor ID 2 .(Other motors will not work.)

This test simulates robot arms grabbing the air when the light disappears.

—> Test Process
e Turn on power, Press (Up) button to enter Test Mode
o Cover the Cds window with hand. = both motors will turn at the same time.

Light sensor is operating without error if the motors turned accordingly.End light sensor test.

20 oun

s Controller HOVIS
08} DRC Basic Test : Sound Sensor

Clap clap

€D Connect Battery
@ Turn on the power
&) Connect left motor : Make sure to connect Motor ID 1 .(Other motors will not operate)
a Connect right motor : Make sure to connect Motor ID 2 .(Other motors will not operate)
Motor near the direction of the clapping sound will turn.
-2 Test Process

e Turn on power, Press (Up) button to enter Test Mode .

e Press (OK) button. = Sound Sensor in operation.

e Clap from left side. = Left motor will turn.

e Clap from right side. = Right motr will turn.

Sound sensor is operating without error if the motors turned accordingly. End sound sensor test.

e 21

s Controller HOVIS
ONF DRC Basic Test : PSD Digital Distance Sensor

psd sensor

€D Connect Battery
@ Turn on the power
&) Connect left motor : Make sure to connect Motor ID 1 .(Other motors will not operate)
a Connect right motor : Make sure to connect Motor ID 2 .(Other motors will not operate)
@ Connect PSD Digital Sensor
PSD Digital sensor uses certain distance as a base of measure and checks to see how far or near it is. It is normally used
to check the depth of the ground to detect steep drop (cliff) and stop the robot.
—> Test Process
e Turn on power, Press (Up) button to enter Test Mode.
e Connect the PSD line and press (Down) button. = PSD Digital Sensor in operation.
e Move your hand or an object within 10cm from the senson. —® Both motors will turn.
e Move your had or an object away from the sensor to the distance > 10cm . = Both motors will stop.

* PSD Digital has only On/Off mode with certain distance as a base of measure.

PSD Digital Sensor is operating without error if the motors turned accordingly. End PSD Digital Sensor test.

22 oun

Controller HOVIS
DRC Basic Test : PSD Analog Distance Sensor

psd sensor

€D Connect Battery

@ Turn on the power

&) Connect left motor : Make sure to connect Motor ID 1 .(Other motors will not operate)
0 Connect right motor : Make sure to connect Motor ID 2 .(Other motors will not operate)

& Connect PSD Analog Sensor
PSD Analog Sensor is able to measure the distance in realtime and control the motor speed according to the distance
from an object. Normally used to avoid obstacles by slowing down and chaning direction.

—> Test Process
* Turn on power, press (Up) button to enter Test Mode. Connect PSD line and press (Down)button.
—» PSD Digital Sensor in operation. = Both motors will turn in same direction.
e Place a hand or an object near the sensor and mover away. = Farther the object faster the motor movement.
—» Nearer the object the slower the motor movement.
e When the object is less than 5cm away from the sensor, motors will turn in opposite direction.

PSD Analog Sensor is operating without error if the motors turned accordingly. End PSD Analog Sensor .

e, 23

B Controller HOVIS
N} DRC Basic Test : Acc/Gyro Sensor

€D Connect Battery

@) Turon on power

6 Connect left motor : Make sure to connect Motor ID 1 .(Other motors will not operate)
a Connect right motor : Make sure to connect Motor ID 2 .(Other motors will not operate)
Place the motors outward to simulate wheels turning.

B Connect Acc/Gyro Sensor : Open the controller cover and connect the Acc/Gyro Sensor.

—> Test Process : ACC
e Turn power on and press (Up) button to enter Test Mode. Connect Acc/Gyro and press (Down) button.
—» Acc sensor is in operation.
* Motors stopped when the controller angle is same as when it is attached to the robot standing up straight.
o Tilt the controller slowly. = Speed of the motor will vary with the angle of the tilt. Greater the angle the faster
the motr will turn.

Acc sensor is operating without error if the motors turned accordingly.

—> Test Process : Gyro
e Press (Down) button one more time from the ACC test mode. = Gyro sensor is in operation.
o Motors stopped when the controller is not moving.

o Move the controller. =» Motors will turn at approximately similar speed to the moving controller.

Acc/Gyro sensor is operating without error if the motors tunred accordingly. End Acc/Gyro sensor test. Both the Acc and
Gyro sensor is on a single chip board.

24 cunEEEEEEEEEE

s Material HOVIS
04 Hovis Lite Componets Diagram

| Herkulex DRS=0101 |
5 Rl S

| Dumimry Sersn DRE-006 |
Durrivry Seren daa
Heaacl, T pebins 2o

€D Servo Motr : HerculeX DRS-0101

9 Bracket : Acts as connecting joint between servo motors
£) Joint

) Harness : Cable

(&) PsD Sensor : Measures Distance

(5) IR Receiver : Remote Control Receiver

Controller DRC

[2) Gyro Sensor : Adjusts position while walking

() ZigBee : Communications Module

() Battery
{f) Remote Control

25

PART

1

0

Material
Hovis Lite Parts List

Quantity Per Item.

HOVIS

Bracket

Rl

Controller lea
7.4V Li—po Battery 1ea
AC adoptor lea

HerkuleX DRS—0101 16ea

Front / Back
Hand

Foot

Universal Plate
Ankle Plate
Dummy Servot
Ul—type Bracket
U2—type Bracket
U3—type Bracket
U4—type Bracket

T PEEEEEE5ES

Serial Cable (DSUB
9Pin/3p Audio Jack)
USB to Serial Gender
Wheel (White, @60)
Horn(Plastic)

£88

I I O O | W

L—type Joint (Single Nut)
L—type Joint (Double Nut)
L—type Joint (Hole Only)

[—type Joint (10.9mm,Hole only)
[~type Joint (12.5mm,Double Nut)
[~type Joint (16.0mm,Hole only)
V-type Joint (12.0mm,Single Nut)
V—type Joint (12.0mmDouble Nut)
Bushing Set

Nut (M2)

Nut (M3)

Bolt (PH/T 2.0x13)
Bolt (PH/M 2.0X4)
Bolt (PH/M 2.0X5)
Bolt (PH/M 2.0X6)
Bolt (PH/M 2.0X8)
Bolt (PH/M 3.0X6)
Bolt (PH/M 3.0X8)
Bolt (PH/T 2.0X4)
Bolt (PH/T 2.0X5)
Harness (75mm)
Harness (100mm)
Harness (200mm)
Harness (300mm)
Harness Clamp

150ea

10ea

A A AR R AR

Loooodoooooooiod ooodoooo

s Material HOVIS
0 Hovis Lite Parts List

Main
DRC-005T @E | DRL-0728 @E=B DRQ-0002/3/4/5 DRS—-0101 [toea |
Controller 7.4V Li—Po Battery AC Adaptor HerkuleX Smart Servo
(3,000mA) (US/EU/UK/AL)
Bolt
& /
Nut -
& DRA-0002 CEN | DRA-0003 EEB | DRA-0006 G | praA-0D007
H Harness (FSmm) Harmess (100mm) Harness (200mm} Harnase {mmm]
arness

® ® S ¢«

DRA=0051 DRA-0052 (E | DRA-0054 EXN | DRA-0056 EX
Nut (M2) Nut (M3) Bolt (PH/T 2.0x13) | Bolt (PH/M 2.0%4)

¢ ¢ & ¥

DRA-0057 CEN | DRA-0058 GEE | DRA-0050 €2 | DRA-(006!
Bolt (PH/M 2.0X5) | Bolt (PH/M 2.0XB) | Bolt (PH/M 20XB) | Bolt (PH/M 3.0%6)

& *

DRA-0062 EINB | DRA-0063 €I | DRA-0064 =B | DRJ-0010 EEB
Bolt (PH/M 3.0X8) Bolt (PH/T 2.0x4) Bolt (PH,T 2.0X3) Harness Clamp

Y, 27

s Material HOVIS
0| Hovis Lite Parts List

Photo Of The Parts.

Bracket l ‘ .
DRB-0001 DRBE-0002 E= DRB-0003 &= | DRB-0004 EED
Front / Back Hand Foot Universal Plate
DRB-0005 @EB | DRE-0006 @B | DRB-0008 DRB-0009
Ankle Plate Dummy Servo U=type Bracket U2—type Bracket
DRB-0010 = | DRB-0011 (EXB
U3—type Bracket Ud—type Bracket
T 9% &% &% o
DRJ-0001 DRJ-0002 DRJ-0003 @2 | DRJ-0004
L=type Joink (Sngke Nu rl:l L=type Joint tI}LUJe M) L=type Joint (Hoke only) |~y Joink
(10.9rm, Hoke only)
DRJ-0006 N DRJ=-0007 EXED DRJ-0008 EX DRJ=-0009 E2
I=type Joint Hype Joint Vlype Joink Wtype Joint
(12 Brmm, Double) {16.0mm, Hole ony) {112,0mm, Single hut) {12, 0mm, Double Mu)
!l
'\..:_‘ l"
g
DRJ=0011 ED
Bushing Set
Etc
;_ =
h— » .!
)
- =
DCW-0001 &= DRI-0002 DRI-0003 DRH—1001 [502]
Wheel (White, @60) Serial Cable USB to Serial Gender Horn (Plastic)

(DSUE 9Pin- 3P Audio Jack)

28 onE

HOVIS

Humanoid Assembly Diagram

Servo motors in our humanoid robot are released with an ID number on each motor, When assembling the robot, make sure the
servos are assembled at the right location by referring to the ID placement diagram.,

Robot will not operate properly when servo motors are placed incorrectly. Motor ID numbers are based on 20 axis robot.

Motors numbered 16~19 have the last ID numbers as they dummy motors and replacements,

Wiring is the most difficult part in assembling the robot. Please read the manual carefully to fully grasp the wiring concept and try

assembling one at a time, Refer to the humanoid robot assembly diagram for wiring details,

Im case of 16 DOF,
ID:0 ~ ID:15
(ID:16~~ID:19 DummyServo)

Im case of 18 DOF,
ID:0 ~ ID:17
(ID:18, ID:19 DummyServo)

Im case of 20 DOF,
ID:0 ~ ID:19

30

Assemble

HOVIS

Humanoid Assembly Diagram

Brackets act as joints and as connection beween the servos.

Brackets make up the shoulder, waist, hips, knees, and feet. Study the bracket assembly diagram before assembly.

Assembly sequence is as follows @DLeft Arm, @Right Arm, @Waist, @Right Leg, GLeft Leg, ®Head, @Controller, ®Battery

HerkuleX

DRS-0101

DRB—-0009
U2-type Bracket
(4ea)

Herkulex
DRS-0101

DRB-0010 |

U3—-type Bracket
(4ea)

HerkuleX.
DRS-0101

DonghuRobot

&

DRB—-0011
U4—-type Bracket
(3ea)

HerkuleX

DRB-0003

Y

DRB-0008
Ul-type Bracket
(4ea)

HOVIS
Humanoid DRC Function Instructions

Turning on the controller

Power Blinks when battery level falls below 20%

Turn on the power and press (L) button to check the battery —» Shown by left 3 LEDs
low 1 LED, medium 2 LED, high 3 LED

Batter Level Check

. Press mode btton to enter basic task
Entering Task . .
Navi key = Ok button, select desired mode

Robot Operation

Assembly midpoint check Mode = (Down) = OK : Check assembly at various midpoints.
mode right arm, left arm, right leg, left leg, sensor

Mode = (L) = OK : Motor check mode
— motor torque released when checking, motor selected one at time.
Selected motor LED blinks.
— (Up) Motor ID ascending order, (Down) Motor ID descending order
— Warning alarm sounds if motor ID does not exist.

Motor check mode

Mode — (Up) —» OK : Autonomous mode : robot moves by itself
— Clap, and the robot will move towards the direction of the clap for
number or claps (Clapping sound during the movement will be ignored)
TGRS [e _ — Robot will start basic movements if does not receive particular re—
sponse in 5s
— Basic movements : sit, stand,move forward,backward, change direction
— Obstacle avoidance(PSD sensor required)

— When fall, automatically stand up by oneself. (Gyro Sensor Needed)

Mode —» (R) —® OK : Remote Control Mode
Predefined movements in number keys (0~9)and in direction

Remote Control Mode
keys(up,down,L, R, stop)

HOVIS

Humanoid DRC Function Instructions

Program Download

HerkuleX connection Blinks when HerkuleX Manager is running Servo

DR-SIM/ Blinks when DR—SIM / Visual Logic is being used to edit
Visual Logic Connection Lit when dowonloading data or firmware

Program

Apply Task to Robot LED will stay lit when the task is running EXEC

) Blinks when transmitting data, when task is running User Spare
Data Transmit X
area used

) Blinks when receiving data, when task is running User Spare
Data Receive RX
area used

User Defined Spare

Error When error detected, all LEDs blink with alarm., All LED blinks

HOVIS
Using Humanoid DRC Functions

Robot Motion

Mode = (L) = OK Enter Check Mode
When green RX LED comes on, press (L) or (R) button to select item to check.
(L) : Motor check mode
— Selects each individual motor and checks connection status and assembly.
— Red TX LED comes on when motor check mode entered.
— When Green LED on selected motor comes on, motor turns to center position (512). Rest of
the motors go into Torque Off state when LED goes off.
— Press (Up) & (Down) to select the motor ID(0~~15). Check the conntection status and location
of the motors.
First selected ID is O(Right Shoulder).
Check Mode - Pres§ (Up) button -to increaée ID by 1, (Down) button to dec.rease by 1.
— Warning buzzer will sound if selected motor ID does not exist.
(R) : Midpoint Check Mode.
— Checks assembly state of arms, legs, and other parts by testing individual modules.
— Spare LED comes on when Midpoint Check Mode is entered.
— Motors in the selected module makes slow repeated movements to simulate straight and
bent posture.
— Press (Up) & (Down) button to select the arm and the leg.
— Seqguence: Left arm, Right arm, Left leg, right arm. Left arm is the first selected module.
— If motor ID is missing from the selected module, buzzer will make same number of sounds
as the numbr of missing motor IDs.

Mode = (Up) = OK, enter autonomous mode.
— Robot makes autonomous movements without user intervention.
— Robot will select from the following movements in random; forward, front roll, left turn, right turn.
— In forward movement, robot will select from 10/20/30 steps in random. In left/right turn,
random selection from 12/24/36 steps.
— Robot will pause for brief time after completing the randomly selected movement before
starting next random movement,
— Robot will be able to avoid obstacles if PSD sensor is installed in the ADC prot 1.
Autonomous Mode o . _
— If robot detects an obstacle, it will randomly select one of the following movements;
backward & left turn, left turn, back roll & left turn,
— backward roll & left turn is only possible if the robot detects an obstacle after moving
at least 10 steps forward.
— If an obstacle cannot be avoided even after making umber of left turs, robot will try
backeward & left turn,
— If acceleration sensor is installed, robot will get back up after falling.
— If robot detects a fall, it will stop current motion and switch to getting up mode.

HOVIS
Using Humanoid DRC Functions

Robot Motion

Mode -) (R) =) OK, enter remote control model

— Controls the robot by remote control. Remote control receiver must be installed for this mode
to function.

— Up : Forward

— Down : Backward

— L : Left turn

— R Right turn

— OK : Stop

— 1 Roll forward

— 2 : Roll backward

— 3 : Push—up

Remote Control
Mode

— 4 : Boxing
— 5 : forward get up(Acceleration sensor must be installed, Only possible from supine position)
— 6 : backward get up(Acceleration sensor must be installed, Only possible from prone position)

Mode =) (Down) =) OK, enter sound demo mode.
— Robot reacts to the number and direction of the sound
— Sound detection on, when controller TX, RX, Spare LED is on
— During sound detection,
— Single sound detected : Random motion from roll forward, roll backward, push—up, boxing.
— Sound deteced twice : robot will lift the arm in the direction of the detected sound and wave.
If the sound was detected once from the left and once from the right, robot will wave the left
Sound Dem Mode . .
arm first and then the right arm.
— Three sounds detected : Robot will turn to the direction of the sound and walk 10 steps

forward. If the sound was from the left, robot will turn left and then walk forward.

% Sound detection may not work 100% all the time due to background noise, echo
from the wall, and other environmental factors. Robot will detect loud and short
sounds like hand clapping more easily.

PART 02

DR-Visual Logic
Programming

s DR-Visual Logic Programming HOVIS
pA DR-SIM & DR-Visual Logic

DR-SIM Introduction

DR-SIM, also called ‘motion editor’ is an easy to use robot motion editing software tool. In addition to motion creation, editing,
and capturing actual robot motion, DR—SIM supports powerful simulation function that allows the user to simulate the motion
prior to applying it to the robot. DR—SIM also incorporates timeline feature similar to the ones found in video editing software,
Timeline allows the user to create motion based on time and to add multimedia effect to the motion by adding LED lighting

effect and sound in the timeline.

® System requirement

® Minimum Intel Pentium 800 Mhz

® Windows XP, Windows Vista, Windows 7
® Minimum 256 MB RAM

® Hard Disk Space 300 MB required

® USB Port

® Macintosh(under development)

Follow Instructions

From installation to running the program

ii® DR-SIM

Welcome to the DR-SIM Setup Wizard

The ingtaller will guide vou through the steps required to ingtall DR-SIM on pour computer,

WARNIMNG: This computer program is protected by copyright law and intemational treaties.
Unauthorized duplication or distribution of thiz program, or any portion of it, may rezult in severe civil

or criminal penalties, and will be prosecuted o the marinum extent possible uhder the
Click

Cancel

< Back

Mest »

01 Installation File

Click on installation file.

02 Start installation wizard

Click “Next” button,

39

=

i DR-SIM

Select Installation Folder

The installer will install DR-SIM to the following folder.

Toingtall in this folder, click "Mext". To install to a different folder, enter it below or click "Browse",

Folder:

EWProgram Files®Donghu Robot DR -5k Browse...

Install DR-51M for wourself, or for anyone who uzes this computer:

(%) Everyone [:I
' ick '
O dust me

% DR-SIM

Confirm Installation

The installer is ready ta install DR-S1M on pour compter.

Click "Next' to start the installation.

i? DR-SIM

Installing DR-SIM

DR-SIM iz being installed.

Plaase wait...

< Back Mext »

03 Select installation folder

Click “Next” button,

04 Confirm installation

Click “Next” button.

0S5 Startinstallation

Starting installation. Wait untill the installation bar
ends.

i® DR-SIM

06 Confirm installation
Installation Complete

Click “Close” button
Software installation complete.

DR-5IM haz been successfully installed.

Click "Cloze" to exit.

Pleasze uze Windows Update to check for any critical updates to the MET Framewo' [:Ill:k '

Cancel < Back

07 Check executable file
ﬁl Check for the executable file, desktop shortcut

LS

icon and from Windows Start) All Programs)
I:'| Fl (= | r.I I.'l Dongbu Robot) DR—SIM.
RIS Click on the executable file to run the program,

If the porgram did not install properly, install the
Microsoft, Net Frame work 3.5 and try again.

Hello DR-SIM

First example of creating motion. Use DR—SIM tor create simple motion and run the motion simulation,

Connect to the robot and download the created motion file and then check the motion being applied by the robot.

0O Run program

Click on DR—=SIM icon and run the program.

@ Hotcn Edt =
Fie iw Frame Pom Ao Tool bl Tory o M e e | W R O 1 Fu“ Screen
BUCDs smand oL Q0 Ry -

:’ """""""""""" DR-SIM Full Screen.

Timeline is in the middle and motion editior at
botom. Motion is usually created or edited using
the timeline and 3D motion window,

LED Molor I Value LED Muotor I Value

)

CRilp Rl RHSD
cobau @ = X0 0

L] REE| 3 #
L1 i L1 1l
e R
LL] 1 o | LLLJ 1
TR s Ml 1a
e . bl -1
I] 15

LLL] L] L
|

s

16 -

AN LED Camtrnl

e 02 Basic Posture
mo&@@%ﬂﬁ@lﬂl?—é

Insert the basic posture in the robot motion
starting point or in the first frame.

Place the posture in the 3D motion window as
basic posture PClick first frame = Insert the
key frame at the top. Click on (Key icon)

Basic posture has been inserted in the key
frame,

TP
oD@

b4
i
b4
¥

If the posture in the 3D motion window is not a
basic posture, select it as basic posture from the
tool bar on the right.(Shortcut Alt + 1)

¢ e = >
© Ek J -

@ PAotion Edicr

Filz “igw Frame Pose Rohot

n:
pen MP 3 Windaw

w A0 Mofian ¥ ndow
+ Face LED Windaw
» Servo Window

Tirma Lina 3
Tima Linz 2
Tima Ling 1%

Filg “igw Frame Fose Robot Taol Help

B LG (aae e g @ es GES—

N T N

obaufl - Y O0D® D

il ®p]

03 3D Window

To enlarge the 3D window, Menu) View)
Click on ‘New 3D Window’.
Click and drag to enlarge the new 3D window.

04 Motion Edit

Click on the robot joint and thin yellow joint
movement line will appear. Click and hold left
mouse button on the line and drag.

Lift the left hand up left and the right hand up
front.

05 Insert Edited Motion

Insert the motion edited in 3D window into desired
timeframe. After inserting the motion, click on the
“ “ at the top to view the simulation in the
3D window.

0 Maitian Editor

File Yiew Frams Pose Roboi Tool Help

B WD e emeniss 000

: Click '

B -

o0
B ®
) =)
ze
an
i
Al
L=
il - 1

que @RI Pose come Aooh Mation

— 4 Click] &l click]

06 Inserted Frame Midpoint Check

To view the motion between two frames, click on
the timeframe section between the basic motion
and the edited motion.

07 Connecting to Robot

Use the USB to Serial converter cable to con—
nect the robot to the USB port of PC or notebook
computer. Click “Connect” icon to make the
connection. Check the Com port if the connec—
tion does not occur. Click “Torque On” button
and try moving the robot arm or the leg by hand.
Torque is on if the robot does not move. Click on
“Robot Play” button and robot will move follow—
ing the created motion,

This ends the first lesson on creating robot mo—
tion and play.

Reference : COM Port Setting

If the connection to the robot does not occur, it
is most likely due to wrong Com port settings.
Right click on “My Computer”, click on “Proper—
ties” to open “System Properties” window, click
on “Hardware” tab to open the device manager.
Click Com port to view the list of configurable
Com ports. Select COM2 connected to the USB
and save. Com port connected to the robot should
now be open.

Setting

09 Reference : COM Port Setting

Select COM2 and save.
Robot and PC software should now connect,

° DRC ID Setting [opy]

[253

46

User Interface

1 ED -
el

éi Timeline I

== LED Molor B Walus LED Molor 1D Valus
() TR | T | 7F | = &
b =1 L1 i LLI[- 1w
I & LLL] 1 LLL] "
2 . i
- LR LLL 4 a0 JRLL 13
. LI i LL] 14
L) bl bl s
*l Li 7 ¥ T w
00 AN LED Cumlimi

)

(®) Instructions : DR-SIM detailed user instructions. Press F1 to view Help .

0 Short Cut : Collection of frequently used menus. Simulation Play, Insert Keyframe, and etc.

@ Mini Timeline : Shows the outline of whole timeframe.

9 Timeline : Created or edited motion can be placed by time.

() 3D Motion Window : Edit robot motion or view the motion simulation.

6 Face LED : Enables user to edit Face LED. Insert into timeframe after editing.

(D sound : Select saved sound. Insert into timeframe after selcection.

Motor Setup Window : Configure values and LED settings by ID for all motors used in the robot.
@ Connect Robot: Shortcut for connecting to the robot. Used to download motion file to the

robot or to capture actual robot motion.

Help

Click ‘Help’ on the menu bar to popup the help window. We recommend reading the Help files prior to using the DR—SIM

program. (Click ‘Help’) Click’Index’) Click ‘Timeline’ on left menu —» Window shown below will open up

MWmin ‘Windam Frirmry Fonciions
] Wara Bar ~ B
ﬂ Caaick War ragEiT. M ey = Ban Fhodow Homan: Pt cioes -
] Ached Cariral Canligumiion
1|

] 30 MWalian ‘Windam &
] Fuca LED

] Servo MWodar Wakies
] Eonliguraban
Tudarinl

&] Presducing Sirpla Waban 1 fl.‘r.!;.'l.l:u Eh oG thie Seaztkan of tie Givealined i1 nodndnap fonm et

kbbbt

B Com Setting : Instruction on setting up the COM port.
® Main Window Major Functions : Instructions on how to use program functions.

Menu Bar

Quick Menu

Robot Control Setting
Timeline

3D Motion Window
Face LED

Servo Motor Values
Environment Setting

| Tutorial

Creating Simple Motion : Explanation about sample motion creation.
Check our website for more motion samples.

e 47

Download

Edited motions are saved as a file. Saved motions files can be batch downloaded to the DRC controller (Existing files in the
DRC will be deleted). Downloaded files are ginve a number according to the order of download which then can be loaded
and used by DR—Visual Logic(Task Editor).

tionhell v O F o i
I@mulon ello | v (2 Save Robot Motion

To save the robot motion, File) Save As)
insert file name and save.

a I]Ii::k'

|capture.dmt Vl | save l

[Motian File(= drmt) v [cance |

01 Robot Control
With the robot and DR—-SIM connected, click on

Taorque Fose :;‘Ihﬁ;! hloticn “Robot Control” icon.

| Discornens | |] | Seting |

02 Robot Control Window

Maotion Download

FOLDER E'D oeurments and Sefting swskang

[Reference]
= Motion data is loaded autoralically from the selecied folder

Motion information download popup opens up.
Top section shows the directoy of saved motion
files. Left window shows motion list saved in the
PC. Files downloaded to the DRC will be listed by
number on the right window.

— When Download’ button s clickad, mofion data in fhe contraller is rewritien based on fhe data in the motian edior,
~'Load’ button leeds the curment motion dets in the controller

= lihen Start’ button is clicked, robot will axecuta the sewcted molion data thiough e contralier,

= Robol rmay restar il automalicaly dunng the diata transmssion betwean the mofion eddor and the controler,

48 ‘um

Fic Wew Frame Fose Rooct Tool Heln
(=™
Patian Downlcad

! m E{Dosuments and ssbngrmEsg

[Reterancal

~ Motion daia s isated

= ot Biowriond Exos s cichedl, ok dath = the costolir & rier e bamed oo He st 1
— Y rond o Roack

= by Shart Duon m cickach, i il wescy e s swsecied rafion sk Basgh e cosiibe,

- Rt bween o and e

Maotion Dewnlaad

| 0 |«

EDocurments and Settingsw ckangy

stdown.dnt

[Reference]

= Motion data is Icacked automatically irom the selected Soider

= Load" bution loads the cument motion data in the controller
=When ‘Start’ button s cicked, robot wil execule the selected motion data theough the controliar,

—When ‘Download’ bution is elicked, mofian data in the contreller & rewriien based on the daia in the motion ediior.

= Rotol may resiart dself ically during the data between the moton edilor and the controler,
Motion list folder Controller motion list
capture.dmt . 0. capture.dmt
hello.dmt - 1. hello.dmt
sk, drnt ‘: - 2, pushup.drt
sitdown.dmt N !{— 3. sitdown.dmt
{

03 Open Saved File Folder

Click on the folder icon at the right side of the
folder directory to open up the folder search
popup window, Click to select the folder where
the motion files are saved.

04 Motion List

Left window shows the list of motions in the se—
lected folder. Place the cursor on the list and click
the download icon,

05 Download

Robot motions will be downloaded one at a time.

Controller motion list

0. capture,.dmt
1, hello.dmt

2. pushiup. drt
3, sitdown.drnt

EIED

50

06 Controller Motion List

Once all the motions are downloaded, motions will
be listed from number O in the controller motion list
window on the right side.

Numbers can be called up by index when
programming with DR—Visual Logic (Task Editor).
This ends the lesson in robot motion download.

Creating Motion — Step by Step

There are two different methods of creating motion. One method is to use the 3D motion window, motion can be created by

clicking on robot joints and using the motion lines. Another way is to capture the motion from the robot. Following lesson will

show how to create motion by using both methods.

- Motion Editor - capture,

File Wiewe Frame Po

Mew File Cirl+M

Cpen Ctrl+0
Save Ctrl+5
nave As F12

Add Motion File Ctrl+M
Insert Motion Ctrl+1

Fie Wiw Fame FPosa Robot Todl Hae Tormus MAIREL Par (aven | 555 | Nrien G
BUChas®mabn oL 200 [r——

o LED Muolor I Value LED Motor I Value
0 & bl o bl -]
3o L1 1 Ll 10

- LIL]] L "

o h LL]] T "R 12

< T | ST 77

] R E 'FF ENT]

L WLlll- - ER | .

* ! L] T LLI 16)
[+ N~) AN LED Conten|

01 New File

File) Click on ‘New File’,

02 New Motion Window

Previous motion window will disappear and new
robot 3D motion window will open.

51

File View Frame Pose Raobot Taool Help

52

B LoD asememn@nlEde @

File

=]

OEEDEaE0ECNEETIEE TN

Q Pration Editcr

“igw Frame Pose Robol Tool Help

T
Open MP3 Windaw
w A0 P otion Window

v Face LED Window
w Servn Window

2

Tirna Ling 3
Timz Linz &
Tima Line 1

*eDw

i
v

CRfle 2p [T b

O Pedp F -

03 First Frame

Insert teh basic posture into the first frame, Click
on the first frame and then click on the key frame
insert,

04 New Motion Window

Motion window can be opened up separtely and
enlarged to conveniently edit motion on screen.
Total of three 3D motion windows can be opened
at same time and placed side by side or top and
bottom to be used for editing.

View) Click on ‘New 3D Motion Window’.
Use the mouse to drag and elarge the newly
opened 3D popup window,

o
£
b |
Z
)
bid
&
bl
)

obme E =TI X00D®

05 Enlarging Robot.

Robot in the edit window can be enlarged.
Click on an empty space and use the mouse
wheel to zoome in or out.

To change the angle, press and hold the right
mouse button and drag. To change the ro—
bot position, press shift + press and hold right
mouse button and drag.

06 Edit Arm Motion
Lifting the arm. Click on the shoulder area and

yellow motion line will appear. Click and drag
along the motion line to lift the arm.

53

— — 07 Insert Key Frame
Fose Robot Tool Help Tone

Y S TE)

Insert the lifted arm motion into the frame. Click
on the desired frame and then click on ‘key’ icon
to insert the motion.

I
I

0705005 ol ol e s 2L) e e R R N L R R T e e e e T

!..,} - LED | Motor ID
Aol | | [| (EEEIE

so e -
z e A7 P
an FEE EIE
bbb FEE | ENE
&b GEE s |
N B AR [
ﬂl 5 E |
o_.a All LED)

08—1 USB to Serial Converter

Start connection to the robot.
USB to Serial conversion cable that connects
robot to the PC/Notebook USB port.

Tu:-ru:|ue."m""I Fose | Caphre | Apphy

Connect

hdotion

08—2 USB port

Connection to the PCs with Serial Port in the
back can made using the serial cable but connection
to notebook computers without the serial port
requires USB to Serial converter,

08—3 Connecting to Robot

Connect the RS232c audio jack to the robot,

08—4 Robot Port

Looking at top of the DRC controller, you will find
serial port connecting to the PC, head side servo
motor port, and power port.

Photo shows all three ports connected.

08—5 Robot Connection Button

Menu for making connection to the robot is
located at top right of DR—SIM window,

Click on ‘Environment Setup’ button to configure
the COM Port.

55

-
Setting
© Version =)
Wer1.n

© Serial Port [ooy |
POAT Haudrate Stophit Parny Flowetrl

JoM1Z 115200 A 1 Mone Hone

o DRC ID Setting oy

[253

° F/W Update

Hovis Lite 18 Dn »

Hmwis | ita TR 0F
o (Hovis Lite 18 DOF

o Robot Type ™ Apply |
L ooty

Haowvis Eco 16 DOF § drat
Hovis ECo 18 DOF |

Stopbit Parity Flowcitrl

o Serial Port -m
PORT Baudrate Stophit Parity Flowctrl
comM1z 115200 A 1 Mone Mone

Torque | | Pose {canes || Acoty | wiotion: M INELL
' Click '—I. Illﬁnbolc-unirujl Sefting |

56

09 Environment Setup

Environment Setup window shows DR—SIM
version, robot selection, and Communications
setting.

10 Robot Selection

DR—SIM provides total of 6 different types of
humanoid robot. Most basic robot is the 16
axis humanoid.

Select the type of robot that was assembled.
Select Hovis Lite 16 DOF

11 COM Port Selection

“PORT” shows the COM Port numbers that can
be selected. Select one of the ports. If there is
no connection, go to the hardware properties in
windows and check the number of the COM port
that can be used.

12 Connecting

Click on the ‘Connect’ icon,

13 Connection

As shown in the left photo, Torque button
becomes active when connection to the robot is
made. Click “Torque On” button to operate the
robot and click ‘Play’ button to play current
motion,

T-:-r':lu-EU| PnseDi.Ej hdation

-

Click

G

14 Robot Motion for Capture
This lesson will show how to caputre and edit
motion from the robot.Click “Torque Off”

button and then manually manipulate the robot
to make desired motion.

15—1 Capture

Click ‘Capture’ button.

15—2 Show Captured Motion in 3D
Window

Captured motion is shown in the 3D motion
window as soon as capture button is clicked,

15—3 Insert Key Frame

Insert captured motion into the desired frame.
Click on the frame first and then click on the
key frame.

57

= — — - oo = T
e
Ll b
-T ¥
! |
1 1 1
150 155 150 155 170 1= 150

30 Motion Wind o Frame :

B

.|
gl

A
i

16—1 Different Motion

Manually make a different motion .

16—2 Capture

Capture.

17 Check Motion

Compare the manually made motion with the
motion in the 3D motion window,

A8 i L i e e i e | e e e

18 Capturing

Capture the newly made motion

19 Insert Key Frame

Insert motion in the desired frame.

20 Delay Value

Robot may make a suden movement if there is
a large motion difference between the first and
the second motion key frame. To prevent such a
sudden movement, there is a way slow down the
first motion.

Click bottom of the frame and drag to the right
with left mouse button pressed. Such an action
will show up as photo on the left and Delay value
will be created.

59

Flig Views Frame Pogse Robot Toal Help

B UC e @/ B@m e L QD

-.;
[

H
E]
]
5
n:
E]
a
1

BOo G ERmeniel 0060 2a|

60

21 Screen Play
Play the created motion in the motion window.

Click ‘Play’ icon.

22 Play

Progress line shows the motion being played
progressing on the time frame,

23 Play On Robot

Apply and play the motion on robot. Click ‘Play’
button located near top right.

24 Robot Motion

Left photo shows the motion created in 3D motion
window. middle and right photos show captured
motions.When played, motions will be played
consecutively.

B DR-Visual Logic Programming HOVIS
WyJ DR-SIM & DR-Visual Logic

Installation

DR-Visual Logic Introduction

DR-Visual Logic is a Drag & Drop type graphic robot programming tool derived from the robot programming language de—
veloped by Dongbu Robot. DR—-Visual Logic has been customized to work with Dongbu Robot DRC controller by modular—
izing the DRC functions, Drag & drop method using the mouse makes DR—Visual Logic easy to program even by the novices
and by using the provided C—like tab, text codes converted from the graphic program can be viewed immediately. As the
codes are similar to the C language, it will also help the novice programmers in learning the C language, DR—Visual Logic is
one of the easiest and yet powerful programming tools in the market and its versatility makes it equally popular with novice

and advanced users alike. Planned upgrade to the program to make it even more versatile and powerful includes upgraded
DRC function modules, motion modules, and integrated simulation

® System Requirements

® Minimum Intel Pentium 800 Mhz
® Windows XP, Windows 7

®m Minimum 256 MB RAM

® Hard disk space 300 MB required
® USB Port

B Macintosh (Under Development)

61

From installation to test

i DR-V¥isuallogic

Welcome to the DR-Visuallogic Setup Wizard

The ingtaller will guide vou through the steps required to ingtall DR -Visuallogic on your computer,

WARMIMG: This computer program iz protected by coperight law and intemnational treaties,
Unauthorized duplication or distribution of thiz program, or any partion of it, may result in severe civi
or criminal penalties, and will be progecuted to the maximum extent pozsible under the law.

(Click)

62

01 Installation File

Click on the installation file.

02 Start installation Wizard

Click “Next” button,

-

ii® DR-VisualLogic

Select Installation Folder

The ingtaller will install DR -Aisuallogic to the follovang Folder.

Tainstall in this folder, click "Mext”. To install to a different folder, enter it below or click "Browse".

Folder:

|E!WF‘rogram Files®WDongbu RobotwDR-VisualLogich Browse...

Inzstall DR-isuallogic for yourself, or for anyone who uzes thiz computer:

() Evemone
(&) Just me

Cancel] ’ < Back

i DR-¥isualLogic

Confirm Installation

The installer is ready ta install DR-YisualLogic on your compter.

Click "Mext" to start the installation,

Cancel] [¢ Back

i# DR-VisuallLogic

Installing DR-VisuallLogic g7

DR -isuallogic iz being installed.

Please wait...

< Back Hest >

03 Select Installation Folder

Click “Next” button.

04 Confirm Installation

Click “Next” button.,

05 Start Installation

Starting installation. Wait for the progress bar to
end.

63

,_{L DR-¥YisuallLogic

Installation Complete

DR VisualLogic has been successfully installed.

Click "Cloze" to exit.

(Click)

Cancel

< Back

06 Finish Installation

Click “Close” button
Program installation complete.

07 Check executable file

Check for the executable file, desktop shortcut
icon and from Windows Start) All Programs)
Dongbu Robot) DR-VisualLogic.

Click on the executable file to run the program.

Hello DR—Visual Logic

First Program Step by Step
Sample Progam Description
Robot has both arms spread out, lower one arm to the side of the body. 16 axis humanoid robot will spread out both arms

when all motors are aligned in the center. one of the arm will be lowered to the side of the body.

01 Assign Variable
Operating the robot is same as operating the
robot servo motor, Value has to be assigned so

that servo will be able to operate.

Click Data) Variable module

f"\

A

02 Start

Click and drag the connecting line located at left
side of the module to the Start Point and dock.

03 Start Programming

When the module and the Start Point is docked
properly, module will become active and change
color as seen in the photo to the left.

This means programming has started.

65

void maind)
1 l Click l
SERVO _TorgCtrl [254] =96
jogl 512, 0, 254, 100)
delayl 1000)
jogl 235, 0, 0,100)
delayl 1000)
jogl 235, 0, 1,100)
h

L o T iy O - O L ey

Variable

Type

- -
ok |

Con tant

Constant Type
. Boaol n Int

Constant Yalue

04 Entire Program

Photo to the left shows the entire progam
lowering the robot arm by moving the motor.

05 Viewing C-Like

Click the ‘Cike’ tab near the top right and task
programming window will open as shown in the
photo to the left. This is the task window of the
entire program. Codes are very similar to the C
language structure so studying the codes will
help the user become familiar with the C
language structure, Cursor will jump follwing the
clicked module, making it easy to see the
module changing to text.

06 Variable Setup

This section allows the servo motor to operate on
it's own, Select Constant as the Variable Type. In
properties, set constant value as 96.

When 96(0x60) is entered in the servo TorgControl
register, servo becomes ready to operate. This
value is sent to the torque value of the next
moduel through the output connector,

Variable

S i
: "

TargCtrl v
Servo ID

Motor
Mode

Position b

Position
——

Time
————3

< T O

Delay
Time

o T O

07 Apply to All Servos

This section applies contact value 96 to all
servos,

Select Variable) Type : Servo RAM,

Select Servo RAM : TorgCtrl .

Set Servo ID : 254, 254 means it will be applied to
all connected servos.

08 Set Angle to All Servos

This section sets all servo motor angles to the
center.

Select Motion) Motor.

Select Mode : Positon. adjust angle.

Set Position : 512 . 512 means motor will be sent
to the center

Set Motor ID : 254 , 254 means it will be applied
to all connected servos.

Set Time : 100 . 1 unit = 11.2ms, 100 units would
be approximately 1.12s.

It means motors will be positioned at the desired
angle for 1.12s.

09 Delay
This section delays the motor for 1s before starting.
Select Flow) Delay module,

Set Time : 1.0 . It means delay of approximately
1s.

67

68

Motor
Mode

Position

Pasition
| — —

0 I O

Maotaor ID
j—

Time

———

< I O

Delay

Time

o IEETINN O

Motor
Mode

Position

Mator ID
[e——
o IEE O
Tirme
—————————

o N O

10 Setup Motor ID 0 (Right Shoulder)

Creating attention posture (Basic Posture)
When all robot motors are aligned to the center,
humanoid robot arms will be stretched out to the
side. Setup below lowers one arm to the side of
the body.

Select Motion) Motor.

Select Mode : Position,

Set Position : 235. 235 turns the motor so that that
the arm stretched out horizontally will be lowered
to vertical down position.

Set Motor ID : 0. Right shoulder motor has ID O
Set Time : 100. Motor will turn to the desired
angle in approximately 1,12s,

11 Delay

Setup below makes the motor wait for 1s before
starting,

Select Flow) Delay Module,

Set Time : 1.0 . Delay start by 1s.

12 Set Motor ID 1 (Right Arm)

Select Mode : Postion.

Set Position : 235. 235 lowers the horizonally
stretched arm to vertical down position.,

Set Motor ID : 1. Right upper arm motor
connected to the should has motor ID 1.

Set Time : 100 . Motor will turn to the desired
angle in apporoximately 1,12s.

13 Download

Compile after programming done —® Download
to robot = Run.

Click ‘Compile’, Click ‘download’ on the right if
there is no compilation error. Download to
robot, Click ‘Run’ button (Arrow button) after the
download.

n 14 Robot Motion

i i Right arm will lower to the side from horizontally
stretched out position.

69

70

User Interface

(New Programming Tab) (Instruction ManuaD

@ Mini Map: Controlled by dragging, shows current position even in lengthy program, jump to any position.

@) Wheel Up/Down : Screen zoom in/out
© Pin Switch : Shows pin names of the current module, disappears whenc clicked again.
@) Conversion Window : From Graphic to Text, Converts graphic programming source to text source, Similar to C language structure,

(D Shortcut : Group of shortcut icons for frequently used commands.
@) Module Tab : All modules

@ Module Window

9 New Programming Tab

) Instruction Manual

@ Connector

(9 Property Window

Downloader

Help

From the menu, click Tools) Help, Help window will popup as shown belw, We recommend users to read the Help files prior

to using the DR—Visual Logic. (Click: Help) Index) Timeline —» Window below will open up)

R
=l e

=] Componznis
Waodule Nawigation: DR-Visusllogic Help =
Conneclor

|£] Prectice Example
= 3 screen Grganizetion

7 Mer Bar Introduction

i [[,
=
=)
El
m
o

= A Maudie Window DR-Viguallogic iz a program that providae a comenient way to program the robot
o UL Wotion movements. DR-VisualLogic is compoesed of Modules. Links. Pins. and Connectaors

% :D::E which are placed and linked to program the robat.

=] totor
] LED
18] souna

-1 =enzor
-ﬂ Sound Sensor Pragraraming using the DRAVisuall sgic mnst.ly |nlunl';e5 placing and .:nnnec'tlng
5] Toveh Sensar modules, adjusting attnbute values. and making links hel'mf.-en the pins. Using the
5 Light s=nzer mouse 1o place and connect the madules arln:l linking the pins Tngellher replaces the
5] viztence Sensar traditional steps in programming such as editing the t2st and compiling the source

8] Dynemic Sengor
- I Semmunic etion
] IRrReCcelver

‘2] Button
- I Data
|i:'| Sparaior
=] Wariablz
=1 Flow

] Loop

1] while

£ switzh

2] weait

:ﬂ Dlelag.,l

ﬂ ;::n:;nue 3 |

® QOutline B Module Window
Organization Motion : Move(Saved robot motion), Motor(servo motor), LED, Sound
Module Sensor : Sound Sensor, Touch Sensor, Light Sensor,
Connector Distance Sensor(Distance Sensor, PSD Digital, PSD Analog),
Practise Dynamics Sensor(Accermeter, Zyro sensor)
o Communication : IRReceive, ZigBee, Button
® Screen Organization Data : Operator, Variable
Flow : Loop, While, Switch, Wait, Delay, Continue, Break

Menu bar
Icon bar
Remote Control
Mini Map
Module Window

71

Programming Module

DR-Visual Logic is comprised of follwing modules,
Module Pack contains all programming modules required to create a program. Each module is supported by the DRC controller

function. ‘Description”: location of each part on humanoid robot and short description of the corresponding module.,

O+~ |

Move Run saved robot motion

Motor Position/speed control by each motor
Motion
Head — run saved LED
LED
Back — Control LED on controller
Sound Sound Buzzer
Sound Sensor Internal, distinquishes Left & Right
Touch Recognize touch on head module
Sensor Light Internal, back, measures light
Distance Measures distance
. Dynamics, Measures acceleration
Dynamics
and angular speed.
IRRciever Recognize remote control data
Communi
cation

Button Reconginze rear controller button.

T T
O* |

Data

Flow

Do RS ER G

Operator

Variable

Loop

While

Switch

Wait

Delay

Continue

Break

Operator

Register data user declare variable/
constant

Endless loop/for statement

Continue loop while condition met.

Control branch, if—else

Wait while condition met

Delay for set time

Return to beginning of loop

Exit loop

73

Programming Module) Regualr Module

All DR—Visual Logic modules are either regular or flow modules,

Regular modules are connected together and used sequentially,

All modules except for the flow modules are regular modules,

From the top. module icons represent Motion, Sensor, Communicaiton, and Data .

74

Programming Module) Flow Module

Flow modules connect to the regular modules and control the flow of the program with loop, switch, and etc. Unlike regular

modules, outline appers around the flow modules when they are connected to the regular modules.

Loop

Loop module commands repeat of certain sec—
tion. Loop with For statement would repeat cer—
tain number of times whereas Loop with Forever
statement would repeat infinite times.

While

While module requires certain condition to be met
before proceeding to the next step. It is a loop
stateement with attached condition.

Switch

Switch module is similar to if—else statement, If the
condition is True, it will perform the top task and
if the condition is false it will perform the bottom
task.,

75

76

Wait

If input condition is True, halt program execution
and wait, Program execution will continue if the
the condition becomes False.

Delay, Continue, Break

Three modules in the left are arranged like regular
modules without the graphic outline.

Delay module delays the program for certain
period. Continue module sends the execution
back to the beginning of the loop. Break module
exits the program from the loop.

Programming Module) Connector

Some modules have Input and Output values. Resulting value of the output connector becomes the input value of the next con—
nected module. Modules with both Input/Output values will have connectors on both left and right side of the module, Refer to

below for example of connectors,

Connector

Help Balloon

It is difficult to distinquish the connector just

by looking at the connector icon. To find out
the function of the connector, place the mouse
cursor on top of the connector and balloon will
appear with the name of the connector.

Opening Help Balloons

To view the name of several connectors all at
once, click on the triangle icon at top left corner
of the module and connector names will appear
beside each connector. Click one more time to
close the balloons.,

Connecting Connectors

To input the output value of the front module into
the input value of the following module, use the
mouse to drag and connect. Connecting line will
appear as shown in the left photo.

17

78

Programming Module) Connection Type

Connection Type

Module connections can be either serial type connection or row type connection,

Hit=ihe

AR T L DR I T VR

Serial Type Connection

In serial type connection, modules are connected sequentially from left to right. The photo above shows arithmetic

calculation program. ((4xBlue)H2xGreen))+(1xRed) calcuation shown as serial type connection.

Row Type Connection

Row type connection, modules are connected in rows using vertical spacing. The 2nd photo with row type
connection is same program as the 1st photo with serial type connection.

Property Window

Modules have their own properties and thses propeties must be given a value for program to work. Ul in property window

includes list popup, radio button, number setting, and etc. Refer to the Help file for details on properties for each module,

property values, and limits,

Motor
Mode

Position
-

o BT O

Motor ID
-

o EEETEEN ©

Time

o EEETEEN ©

Property Window

When motor module is clicked, property window
shows up on right side of the window, Motor has
speed and position control properties. To control
the position, select ‘Position’ in Mode selector. To
control speed, select ‘Velocity’, Position, Motor
ID, Time values are adjusted in the detailed
settings below the Mode Selector.

79

Compile/Download

Once the programming is complete, it is compiled, downloaded to the robot and run, Downloader is a large icon located at

bottom left side of the programming window. More specific commands are found in the tools menu.

Downloader Icon

Downloader icon has three commands.
Compile command on the left, download
command on the right, and play command in
the middle shown by arrow like icon.

Tools Help Tools Menu
Compile F&
Download Fi Tools menu contains more specific related
Run F& commands,
Stop Shift+Fh

Fun to Breakpoint F9
Fun Step by Step F10

Compile : Comile edited task..
Download : Download compiled task file.

Stop Debug shift+F3 Run : Run downloaded Task file.

Stop : Stops running the program.

Run to breakpoint : Program will run to
designated breakpoint and stop.

Stop Debug: Stops debugging process

Run in single steps : Runs program by module,

COM Setting

80

PART

DR-Visual Logic Programming
VA DR-SIM & DR-Visual Logic

HOVIS

Programming Individual Modules

Provided sample program is based on 16 axis humanoid robot with DRC controller platform. Sample program will require

reprogramming if it is to be used for 18,20 axis humanoid robot or other variations with change in modules or motions.

Before running the program, check the motor ID and robot sensor locations. Also, use the DR—SIM to check the saved motion

list and apply correct index values, Provided sample program is as follows,

Move

Motion

Motor

LED

Sound

Sound Sensor

Sensor

Light

Distance

Dynamics

Communi .
IRRciever

cation

Button

Move module loads the robot motion saved in the DRC controller and applies it to the program. Robot

motion can be loaded by the number, and if required, names can be checked from DR—SIM. This
program will repeat running the motion creatd by DR—SIM on the robot indefinitely. This is a relatively

complicated program useful for reliability test or for demostration purposes.
This program creates dancing motion by controlling individual motors.

This program will turn on/off the LED by pressing the button on DRC Controller,

This progam will output sound when input from remote control buttons(#1~8) is received.

Sound sensors are located inside the DRC on both sides. This program will make the robot respond to
the left clap by lifting the left arm and to the right clap by lifting the right arm (Sample # 2). Robot may
have difficulty distinquishing the direction of the clap when there is lots of background noise. It may
respond by lifting both arms to a single clap from one direction or respond erratically. More refined
programming is required to make the robot to respond more reliably regardless of the background
noise. Refining the program by forcing a DELAY after registering the first sound so that it will not receive
anymore sound input will increase the reliability.

This program makes the motor respond to the external luminosity. When luminosity de—
creases, robot will lift up the left arm (Covering the CDS sensor at back of the controller will
decrease the luminosity and robot will respond by lifting the left arm).

PSD Digital(Distance Sensor) : This program makes the robot walk backwards, turn right,
and then walk straight if it detecs a wall within certain distance.
PSD Analog(Distance Sensor) : This progam makes the robot turn left to avoid the wall.

Accerlateration : This program makes the robot stand if it falls forward, makes the robot
stand if it falls backward.

This program assigns different sound notes to the remote control buttons 1~8 and makes
the DRC controller play the sound.Buttons1~8 matches Do~Si. (With Sound)

LED at back of the DRC respond to the press of a button on DRC (with LED)

e 81

B DR-Visual Logic Programming HOVIS
A Programming Individual Module : Motion) Move

Move Example Step by Step

Example Description

Move module loads the robot motion saved in the DRC controller and applies it to the program. Robot motion can be loaded
by the number, and if required, names can be checked from DR—SIM. This program will repeat running the motion creatd
by DR—SIM on the robot indefinitely. This is a relatively complicated program useful for reliability test or for demostration
purposes.

* Motions and Motion numbers used in this example are not same as the provided basic motion. This example assumes

motion was created by DR—SIM and downloaded to the DRC. To download motion go to www.hovis.co.kr/guide

01 Assign Variable
Operating the robot is same as operating the ro—
bot servo motor. Value has to be assigned so that

servo will be able to operate,

Click Data) Variable module,

02 Start

Click and drag the connecting line located at left
side of the module to the Start Point and dock.

03 Start Programming

When the module and the Start Point is docked
properly, module will become active and change
color as seen in the photo to the lett.

This means programming has started.

SERVO _TorgCtrl [254] =96
motionready 23
delay(1500)
whilel true)
1
matian{ 2
waitwhile! MPSU_Playinghdation)

Caonstant

Variable

Type

7 Seclecifcorsi:

Oint

tant Yalue

I s

04 Entire Program

Loads the saved motion and duplicates &=l 2
ME 71Xt Y5 S Al7[= =232 Ul
L, Motion ready Zfoll Fo|StL|Ct,

05 Viewing C-Like

Click the ‘C—like’ tab near the top right and task
programming window will open as shown in the
photo to the left. This is the task window of the
entire program. Codes are very similar to the C
language structure so studying the codes will
help the user become familiar with the C lan—
guage structure. Cursor will jump follwing the
clicked module, making it easy to see the mod—
ule changing to text.

06 Variable Setup

This section makes the servo motor to operate on
it's own, Select Constant as the Variable Type. In
properties, set constant value as 96.

When 96(0x60) is entered in the servo TorgCon—
trol register, servo becomes ready to operate.
This value is sent to the torque value of the next
moduel through the output connector,

Xow
Servo RAM %}

Variable

Type

Servo RAM v

Move
Play/Stop

Motion Tndes

—
<] >}
Maotion Ready

Otue. @BFake

Delay
Time

-———

07 Apply to All Servos
This section applies contact value 96 to all ser—
VOS.

Select Variable) Type : Servo RAM.

Select Servo RAM : TorqCirl .

Set Servo ID : 254, 254 means it will be applied
to all connected servos..

08 Motion Ready

When the motion is loaded, robot may make a
sudden movement or motion change from the
current position. If the difference between the
current position and the start of the motion is
drastically different, it may cause stress to the
motors or pose danger to the user. To prevent
such an occurence ‘Motion Ready’ is used to
give time for motion to start.

Select Motion) Move .

Select Play/Stop : Play .

Select Motion Index : 2. Load motion No 2, As a
reference, motion No 2 in this progam makes the r
obot sit and stand. It does not necessarily have to
be No 2. User can select another motion No to use.
Select Mation Ready : True . When True is selected,
robot will siowly change to starting position of the moiton,

09 Delay

To prevent the motion from starting before Motion
Ready ends, set Delay value to 1.5s.

Loop
Condition

Forever o

Mation Index
|
[—————

Mation Ready

= T nF-3|':'-E!

Controller motion list

0. capture.drit
1. hello, drt

2. pushiup.dmt
3. sitdown.drt

| Click l

10 Loop

Set Forever infinite loop.

11 Motion Movement
If Motion Ready value is set to False, motion will

run from start to finish,
Select Motion Ready : False .

Reference: View Motion

To view the list of motions in the controller, con—
nect to the robot and click robot setting from
DR-SIM,

No 2 motion Robot sits and stands,

Variable
Type

MPSL RAM Data b

MPS|

|
[PlayinghMotion
- ~ 4|
MPSURAM = ;
| PlayingMaotian

I

MPSU RAM
PlayingMotion

12 Check Motion Movement

Loop refers to continuous repetition, It takes time
for the actual motion to complete after Move
command has been issued, but loop with single
move module will continue to run and give motion
command even while the previous motion is still
running. The lag in actual motion will result in
difference between the number of motion commands
given by the move module and the number of actual
motions. To correct this difference, loop will need
to wait for the motion to complete before repeating
the process.Playing Motion’ is found within
Variable) MPSU RAM Data,

‘Playing Motion’ is a variable that checks
whether the motion is in process. Loop will wait
for the current motion to end if ‘wait’ is added to
the ‘Playing Motion’,

Select Data) Variable Module,

Select Type : MPSU RAM Data

Select MPSU RAM : Playing Motion

Add Wait module to the output connector,

13 Wait

Wait untill the motion ends.
Go to the begining and repeat when motion
ends.

14 Compile, Download, Run

Click left icon to compile. If no compile error is
found, click right icon and download to robot.
After the downoad is complete, click the arrow
like run button in the middle to apply the pro—
gram to the robot,

15 Robot Motion

Robot wiil continuously repeat sit and stand motion.

PART

02

Motor Description

DR-Visual Logic Programming

HOVIS

Programming Individual Module : Motion) Motor

Motor module has two types of oerating modes. Positions control mode and Speed control model.

Motor

Moda

Hosgon
S —
o lES C
Motor [D

e ——

Tirmna

1002
{159.8°)

0 Position Control Mode

Position control mode changes the position of the
selected motor to desired position.

Position has value range between —127~1152,
Servos are released from the factory with default
value range of 21~~1002. Values beyond the
default range is possible with adjustment to min/
max motor values and position adjustment
values. Motor has regular position value of 512
which is used as a standard position value when
assembling. When all Hovis motors have position
value of 512, Hovis will be in standing position
with both arms stretched out 90 degrees to the
side. Refer to the diagram below to view position
range and regular position.

Motor ID is the ID of the servo to be controlled.
Time refers to the time it takes for servo to reache

the goal position. 1tick = 11.2ms. 100 tick would
take the servo 1.12s to reach the goal position.

2l

(—159.87)

Molor

Miode

Walocky
——

O IEEN O

Motor 1D
——————————)

4| >
Time
- —

g Speed(Velocity) Control Mode

Speed control mode puts the selected servo in
continous roation with specific speed.

Velocity has value range of —1023~1023, Larger
the value, larger the output with increased rotation
speed. Sign of the value determines the direction
of the rotation,

Motor ID is the ID of the servo to be controlled.

Time refers to the time it takes for servo to reache
the goal position. 1tick = 11.2ms. When set to 100
tick, servo would take 1.12s to gradually reach the
goal speed.

AT DR-Visual Logic Programming HOVIS

02 Programming Individual Module : Motion) Motor

Example Step by Step

Example Description

Robot motions are usually made by controlling each individual servos and cosolidating their response. But, controlling each
servo is a compliecated procedure which is why tools such as the DR-SIM (Motion Editior) is usually used.

Instead of using the Motion Editor, this example will use the Task Editor to control each individual servos to produce a con—

tinuous motion, The end result of the program will be a very interesting wave dancing robot,

01 Assign Variable

Operating the robot is same as operating the
robot servo motor. Value has to be assigned so

. that servo will be able to operate.

TR —
m Click Data) Variable module.

ariable
=]

02 Start

Click and drag the connecting line located at left
side of the module to the Start Point and dock.

03 Start Programming

When the module and the Start Point is docked
properly, module will become active and change
color as seen in the photo to the left,

This means programming has started.

e

SERVO _TargCirl [254] =596
jogi B12, 0, 254, 100)
jogl 235, 0,0, 100)
jogl 235, 0,1, 100)
jogl 789, 0, 3, 100)
jogl 789, 0, 4, 100)
delay(1500)

jogl 374, 0,1, 10
jogl B8O, 0, 4, 10}
delay(1000)

jogi B12, 0,1, 10)
jogi 612, 0,4, 103
delayl 1000)

jogl 449, 0, 4, 40)
jogl 681, 0,5, 40
delay{ 300)

jogl B89, 0, 2, 40)
jogl BO8, O, 4, 40)
jogi 416, 0, &, 40)
delayi 300)

jogl 416, 0, 1, 40}
jogl 608, 0, 2, 40)
jogl 435, 0, 4, 40)
jogl 512, 0,5, 40

delay(300)

04 Entire Program

Entire program controlling the motors.

05 Viewing C-Like

Click the ‘C—like’ tab near the top right and task
programming window will open as shown in the
photo to the left. This is the task window of the
entire program. Codes are very similar to the C
language structure so studying the codes will
help the user become familiar with the C language
structure, Cursor will jump follwing the clicked
module, making it easy to see the module
changing to text

91

92

R jogl 575, 0, 1, 40)
29 | jogl 343, 0, 2, 40)
30 ! jogl B12, 0, 4, 40)
3 delay(300
32 jog{ 512, 0,1, 40)
33 1 jogl B12, 0,2, 40)
34 delay(500)

35 | jagl 374, 0, 1,10
36 ! jogl B850, 0, 4, 10°)
37! delay(200)

38 jogl 235, 0,1, 10
39 ! jogl 789, 0, 4, 10)
40 delay(200)
a4}

Variable 06 Variable Setup
T'f."[:lE!

et
2 m This section makes the servo motor to operate on

it's own. Select Constant as the Variable Type. In
_ properties, set constant value as 96.

When 96(0x60) is entered in the servo TorgControl

‘}: _ register, servo becomes ready to operate. This
-

value is sent to the torque value of the next moduel
——— through the output connector.

Constant Type
Bcool Ot

Constant Walue

. Servo RAM

] Input

2

Variable
Type
Servo RAM

Motor
Maode

Position

Position
I F—

o EEEE O

Maotor ID

Motor

Mode

Paosition
e I —
a =
Mator ID
[——

o I O
Time
—————

© IEEE O

07 Apply to All Servos
This section applies contact value 96 to all servos.

Select Variable) Type : Servo RAM.

Select Servo RAM : TorqCirl .

Set Servo ID : 254, 254 means it will be applied
to all connected servos..

08 Set Angle to All Servos
Set all servo motor angles to the center,

Select Mation) Moter .

Select Mode : Positon . Set angle.

Set Position : 512 . 512 sets servo angle to the
center

Set Motor ID : 254 . apply to all servos

Set Time : 100 . 1tick = 11.2ms, 100 tick = 1.12s,
Move to set angle for1.12s.

09 Motor ID 0 (Right Shoulder) Setup

1st stage : Initial position

Make attention posture(Basic posture)

When all servo motors are aligned to the center,
humanoid robot will be standing with both arms
stretched out to the side. This stretched out arm
posture need to be returend to the basic attention
posture to make applying motion easier.

Select Motion) Motor

Select Mode : Position

Set Position : 235 . 235 turns the the motor so
that the right arm in horizontal position can be
lowered to vertical position.

Set Motor ID : 0. Right shoulder motor has ID 0.
Set Time : 100. Motor will turn to set angle in
1.12s.

93

Motor

Made

——y—
= =
Maotar 1D
———
a >
Time
——————%

o I O

Motor
Mode

Paosition
P —
= o
Matar 10
——
o >
Time
[

o IECE O

Motor
Mode

p———————
o I O

Motor ID
e ———

a o
Time
— .

10 MotorID 1 (Right Arm) Setup

Select Mode : Postion .

Set Position : 235 . 235 turn the horizontal arm to
vertical position.,

Set Motor ID : 1. Right upper arm motor con—
nected to the shoulder has ID 1.

Set Time : 100 . Motor will turn to set angle in
1.12s,

11 Motor ID 3(Left Shoulder) Setup

Select Mode : Position.,

Set Position : 789, 789 turns the the motor so that
the let arm in horizontal position can be lowered
to vertical position,

Set Motor ID : 3, Left shoulder motor has ID 3.
Set Time : 100. Motor will turn to set angle in
1.12s.

12 Motor ID 4(Left Arm) Setup

Select Mode : Postion .

Set Position : 789 . 235 turn the horizontal arm to
vertical position.

Set Motor ID : 4. Left upper arm motor connected
to the shoulder has ID 4.

Set Time : 100 . Motor will turn to set angle in
1.12s.

Motor
Mode:

Matar ID
[————

) IR C

Time
[———

o I C

Motor
Mode

Position
——

o I C

Motor ID

[—————
a o
Time

o I O

13 Delay

Delay 15 s.

14 Motor ID1(Right Arm) Setup

2nd Stage : Set arm angle to 45 degrees.
Set am angle to 45 degrees 1o prepare the robat for the
dance,

Select Motion) Moter.,

Select Mode : Position,

Set Position : 374 . 374 changes the right am angle to
45 degrees.

Select Maotor ID : 1. Right upper arm motor has ID O,

Set Time 1 10. Motor will turn to set angle in 0.112s,

15 Motor ID 4(Right Arm) Setup
Set left upper arm motor ID 4 to 45 degrees.

Select Mation) Moter,

Select Mode : Posttion.

Set Position : 650 . 650 changes the left arm angle to 45
degrees,

Select Mator ID : 4, left upper am motor has ID O,

Set Time :10. Motor will turn to set angle in 0.112s,

95

96

Delay

Time
.

EEETEN

Motor

Mode

Paosition

Maotor ID
e ————

o I C

Time

o IEC ©

Motor

Mode

Position

2 IEETE C

Motor 1D
[———————g

o N C

Time

O ST C

16 Delay

Delay 1s.

17 Motor ID 1(Right arm) Setup

3rd Stage : Set arm angle to 90 degreees.
Set am angle to 90 degrees to start the robot on the
wave dance,

Setup Motion) Motor.

Select Mode : Position.

Set Position : 512, 512 50 changes the Iight am angle
to 45 degrees. 512 s also the center pasition of the mator.
When all motors are set to the center position, robot
will stretch out both arms to the side.

Set Motor ID : 1. Right upper arm motor connected
to the shoulder has ID 1

SetTime : 10. Motor will turn to set angle in 0.112s.

18 Motor ID 4(Left Arm) Setup

Set arm angle to 90 degreees.
Set atm angle to 90 degrees to start the obot on the
wave dance.,

Setup Motion) Moter.

Select Mode : Position,

Set Position : 512, 512 50 changes the left arm angle to
45 degrees, 512 is also the center position of the motor.
When all motors are set to the center position, robot
will stretch out both arms to the side.

Set Motor ID : 1. Left upper arm motor connected
to the shoulder has ID 4

SetTime : 10. Motor will turn to set angle in 0.112s,

Delay

Time

Motor
Mode

o I C

Motar 1D
[—————

a >
Time

O I C

Motor
Mode

Fasition
———

o I T

Motaor ID
je————

3 C
Time
- e

19 Delay

Delay 1s.

20 Motor ID 4(Left Arm) Setup

4th Stage : Wave 1 stage
Start the wave from the left arm.,

Select Motion) Moter,

Select Mode : Position.

Set Position : 449, 449 changes the left arm
angle to the start of the wave dance.

Set Motor ID : Left upper arm motor connected to
the shoulder has ID 4

Set Time : 40 . Motor will turn to set angle in
0.448s.

21 Motor ID 5(Lower Left Arm) Setup

Lower left arm wave.

Select Motion) Moter,

Select Mode : Position.

Set Position : 681.

Set Motor ID : 5. Lower left arm motor has ID 5.
Set Time : 40 . Motor will turn to set angle in
0.448s,

97

22 Delay

Delay

Time
—————————1 Delay 0.3s.
Short delay as dance has started,

23 Motor ID 2(Lower Right Arm) Setup

Motor

m 5th Stage : Wave 2 Stage

.
Lower right arm wave,

Pasition

B —— Select Motion) Motor.

32 EEEZE C© Select Mode : Position .

"r'-'1|:|t|:|r 1D Set Posttion : 589

— Set Motor ID : 2. Lower rigt arm motor has ID 2,

3 C Set Time : 40 . Motor will turn to set angle in

0.448s.

Time
ey

3 IR C

24 Motor ID 4(Left Right Arm) Setup

Motor
bece Change the motor angle slightly to give wave effect,
Position Select Motion > Motor.
Select Mode : Position .
Set Position : 608 .
P Set Motor ID : 4 .
MoTtor]
R — Set Time : 40 . Motor will turn to set angle in
a M ouss

Time
a1

a

Motor

Mode

Paosition
F———

o I C

Motor 1D

[—————
a (>}
Time
.

o I C

Delay
Time

o IEN O

Motor
Mode

|

Pasition

Motor ID
e ——————

a (>
Time

o IR O

25 Motor ID 5(Lower Left Arm) Setup

Change the motor angle slightly to give wave effect.

Select Motion) Motor,

Select Mode : Position .

Set Position : 416.

SetMotor D : 5,

Set Time : 40 . Motor will turn to set angle in
0.448s.

26 Delay

Delay 0.3s.
Short delay as dance has started,

27 MotorID 1(Upper Right Arm) Setup

6th Stage : Wave 3 Stage
Return motor to original position,

Select Motion) Motor.

Select Mode : Position .

Set Position : 416.

SetMotor D : 1,

Set Time : 40 . Motor will turn to set angle in
0.448s,

99

28 Motor ID 2(Lower Right Arm) Setup

Motor

Mode
Return motor to original position.
il Select Motion) Motor.
— s Select Mode : Positon .
- - Set Position : 608,
Matar ID Set Motor ID : 2,

B ———— Set Time : 40 . Motor will turn to set angle in
< (> 0.448s.

Time
——

o I O

29 Motor ID 4(Upper Left Arm) Setup

Motor
Eeek Return motor to original position.
Select Motion) Motor,
Select Mode : Position .
Set Position : 435.
Motor ID Set MOtor lD : 4-
- Set Time : 40 . Motor will turn to set angle in
<] o 0.448s.

Time
I,

o I C

30 Motor ID 5(Lower Left Arm) Setup

Motor
Made

= Return motor to original position.

Lo Select Motion) Motor,
e — Select Mode : Posttion .
o c Set Position : 512,
“r-.-'|.;.r_.:.r D Set Motor ID : 5,
- Set Time : 40 . Motor will turn to set angle in

<] > 0.448s.
Tirne
—

o I C

Delay

Time

© ICEN. ©

Motor
Mode

Paosition

Motor ID
[————

< o
Tirne
—————

o IR C

Motor
Mode

postn)

Pasition
| — —

a >
Motor 10
p—1
<] c
Time
.

o IR C

31 Delay

Delay 0.3s.
Short delay as dance has started,

32 MotorID 1(Upper Right Arm) Setup

7th Stage : Wave 4 Stage
End Wave,

Select Motion) Motor.

Select Mode : Position .

Set Position : 575.

Set Motor ID : 1.

Set Time : 40 . Motor will turn to set angle in
0.448s.

33 Motor ID 2(Lower Right Arm) Setup
End Wave,

Select Motion) Motor.

Select Mode : Position .

Set Position : 343,

Set Motor ID : 2.

Set Time : 40 . Motor will turn to set angle in
0.448s.,

101

Motor 34 Motor ID 4(Left Upper Arm) Setup

Mode
End Wave.
o — Select Motion) Motor.
[«] [] Select Mode : Position .
Set Position : 512,
Maotar ID Set M Otol' |D . 4-
————
= Set Time : 40 . Motor will turn to set angle in
o I ©
: 0.448s.
Tirne
e
<] o
35 Delay
Delay
VI Delay 0.3s.

o EEEN O

Short delay as dance has started.

Z

36 Motor ID 1(Right Upper Amr) Setup

Motor

Mode 8th Stage : Wave 5 Stage
Bll] Externd both arms to the side .
Position
e — Select Motion) Motor.
o BEE C Select Mode : Position .

- Set Position : 512.
oLl Set Motor ID : 1.

_ Set Time : 40 . Motor will turn to set angle in
< o 0.448s.

Time
1

o I C

Motor

Modle

Matar ID
[e—————g
a >
Time
I,

€3 IR C

Delay
Time
| —

o IEE

Motor
Made

Pasition

Motar ID

[—————
a >
Time
.

37 Motor ID 2(Lower Right Am) Setup

Externd both arms to the side .

Select Motion) Motor,

Select Mode : Position .

Set Position : 512,

Set Motor ID : 2,

Set Time : 40 . Motor will turn to set angle in
0.448s.

38 Delay
Delay 0.5s

39 MotorID 1(Upper Right Arm) Setup

9th Stage : Lower arm to 45 degrees
Return to attention posture, change arm angle to
45 degrees first,

Select Motion) Motr,
Select Mode : Position.
Set Position : 374.

Set Motor ID : 1,

Set Time : 10 .

103

Motor

Made

Paosition

Motor ID
| —S

(4] (>}
Tirne

o I O

Delay
Time

o EEKENEN O

Motor
Mode

Positian
| —

o I C

Motar ID
S

a [>]

Time

N

o I ©

40 Motor ID 4(Left Upper Arm) Setup

Return to attention posture, change arm angle to
45 degrees first,

Select Motion) Motor.
Select Mode : Position,
Set Position : 650.

Set Motor ID : 4.

Set Time : 10 .

41 Delay
Delay 0.2s .

42 Motor ID 1(Upper Right Arm) Setup

10th Stage : Dance Complete
Return to attention posture,

Select Motion) Motor,
Select Mode : Position,
Set Position : 235.

Set Motor ID : 1,

Set Time : 10 .

Motor
Mode:

Paosition
p———— i —

o IECE O

Motar ID
!
S————

<] >
Time
——

o I C

43 Motor ID 4(Upper Left Arm) Setup
Return to attention posture,

Select Motion) Motor.,

Select Mode : Position,

Set Position : 235.

Set Motor ID : 4.
Set Time : 10 .

44 Delay

Delay 0.2s .

45 Compile, Download, Run

Click ‘Compile’. Click ‘download’ on the right if
there is no compilation error. Download to

robot. Click ‘Run’ button (Arrow button) after the
download.

105

4.6 Robot Motion

Wave dance will start from the left arm.,

DR-Visual Logic Programming HOVIS

PART
02 Programming Individual Module : Button, LED

Button, LED Example Step by Step
Example Description
This example uses the buttons on DRC controller to turn on/off LED,

In order to program the button and the LED, user should have an understanding of how the button and the LED work,

16 =24

Hexadecimal 0 4
Binary 0000 0100

Right Down| Ok
Button Left Up Mode
EX) Right 2 0 h
0010 0000
Down 0 8 h

0000O0 1000

Button

DRC has 6 buttons and pressed button is expressed by a 1 Byte. 1 Byte is made up of 8 Bits so 1Byte is able to carry 8
1s and Os. 6 bits are required to express pressed (1) and released (0) status of 6 DRC buttons. As shown in the diagram
above, each button is matched with a single bit. Pressed button is expressed in 1s and Os and it is shown in hexadecimal
format at bottom right side of the button module. Pressed ‘right’; button has value of 00100000 or 20h when converted to
hexadecimal format (h refers to hexadecimal). Pressed ‘down’ button has value or 00001000 or 08h in hexadecimal format.
For something more complicated, pressed ‘up+down’ button has value of 00001100 or OCh in hexadecimal format,

e 107

BGR True=1, False=0

0 0000

1 000 1 — Blue False: 0
2 0010 —F - True : 4
3 0011 Green False: 0
4 0100 — > True : 2
5 0101 Red False:0
6 0110 — True : 1
7 0111

V

led()
led(4 X Blue + 2 X Green + 1 X Red)

LED

DRC has seven LEDs but only three can be controlled by the task mode. Three bits are required to express on/off status of
the three LEDs; Red, Green, Blue. As shown in the diagram above, each LED (Red, Green Blue) is matched with a bit in an
ascending order from the lowest bit of the byte to the highest. LED lights up when the LED value is used as an input of the
LED module. All LEDs are turned off when the input value is 0(00000000) and they are turned on when the input value is
7(00000111). Blue in binary format is 4, Green 2, and Red 1. When on/off state of each individual LED is determined by the
value (true, false) of the variables Blue, Green, and Red, it is possible to control the LEDs by their variable names using 4 x
Blue + 2 x Green + 1 x Red as the input of the LED module. For example, when Blue and Green is ‘true’ and Red ‘false, it
becomes 4 x Blue + 2 x Green + 1 x Red = 6. 6 in binary format is 00000110. Green and Blue LED will light up when this
value is used as an input of the LED module.

Use the basic principals from above to program the Buttons and LEDs.

108 v

(('P 01 Assign Variable

Click Data) Variable module,

i
@

02 Start

Click and drag the connecting line located at left
side of the module to the Start Point and dock.

03 Start Programming

When the module and the Start Point is docked
properly, module will become active and change
color as seen in the photo to the left.

This means programming has started.,

109

04 Entire Program

Entire program using the buttons and LED.,

C-like 05 Viewing C-Like

1+ woid main()

2id Click the ‘C—like’ tab near the top right and task
o Hetiiaeg @ rogramming window will open as shown in the
41 Green=false prog 9 Pel

5 Blue=talse photo to the left. This is the task window of the
E: BinEnd=false : .

71 while{ frue) entire program. Codes are very similar to the C
gt 1 language structure so studying the codes will
9 E ifi {{ MPSU_ButtonStat == 0x04) && (IBtnEnd) 1) help the user become familiar with the C |anguage
10 1 o . .

1 Fed=(IRed structure. Cursor will jump follwing the clicked
:g } BinEnd=true module, making it easy to see the module
14} oloe changing to text.

151 {

16! t

171 if({ (MPSU_ButtonStat == 0x20) && (1BtnEnd)))

18 1

19 Green=l |Green }

20 BtnEnd=true

21 t

Pl else

231 {

24 t

251 ifl { { MPSU_ButtonStat == 0x08) && { 1BtnEnd) 1)

26 {

27 Blue=(|Bluz)

28 BtnEnd=true

291 b

30 else

31 {

e

33 led{({(4+Blug)+(2~Green))+ Red))

34 if{ { { MPSU_ButtonStat == 0x00) && BinEnd)

e {

36 BinEnd=false

Variable

=]

)
7 Selectiiconstan: |

[——
< I C
;:Zujr'r:.fant Type

3 w n Bool . Int

Constant Walue

Variable

Type

i

p—
o I O
Variable Mame

06 Initialize as False
All LEDs are initialized False (Off).
Select Data) Variable .

Select Type : Contant .

Select Constant Type Bool . True or False data
type.

Select Constant Value : False

Use the connector to connect False to the variables,

07 Red Variable

Select Data) Variable .
Select Type : Variable .
Variable Name : Red .

Red LED off when False, on when True.

111

08 Green Variable

Variable

Type

;
2 varab Select Data) Variable .

Select Type : Variable .
Variable Name : Green .

Green LED off when False, on when True
——

Wariable Mame

[{=1=g]

09 Blue Variable

Variable

Type

Select Data) Variable .

Select Type : Variable .
Variable Name : Blue .

Blue LED off when False, on when True

Variable 1 O BtnEnd Variable
Type
BtnEnd Variable maintains ‘False’ value while the
button remains released but changes from False
Y True as soon as the button is pressed and the
motion ends,
Value changes back from ‘True’ to ‘False’ as
soon as the button is released.

Select Data) Variable .
SelectType : Variable .
Variable Name : BtnEnd .

- e 11 Assign Variable

Assign False as the initial vlaue of Red, Green,
Blue, BtnEnd.

12 Loop
Condition
Forever v Forever infinite repetition.
Button 13 Up Button
Button Yalue
— o= Create a button module. This module becomes
PEEs |LUs | le True' when the selected button is pressed and
= = ‘False’ under other conditions, When Up Button is

Dowernt Right

selected, ‘True’ when Up Button is pressed and
‘False’ under other conditions.

Select Communication) Button module.
Set Button Value : Up .

Value is 04h in hexadecimal format. 04h will be
shown in the module.

e 113

Variable

Type

ariable Name

BtnEnd

Operator
=] '_f_ g T'!:"I:IE

Operator

Operator Tyoe

14 BtnEnd

BinEnd value is intialized as false. It beocmes True
with ‘not’ opertaor attached to the back.

Copy and paste the btnEnd variiablef from the front,

15 ! Operator

Use | operator to change the BInEnd value to the
opposite.

Select Data) Operator module.
Select Operartor Type : Logic.
Select Logical Operator : | .

16 And Operator

When Up button is pressed, BtnEnd false
(Becomes True by applying !) becomes True and
executes the conditional statement behind.
Select Data) Operator module.

Select Operartor Type : Logic.

Select Logical Operator : && .

17 Up Button Pressed

When Up button is pressed and BtnEnd is false,
condition behind is executed.

Switch 1 8 If Switch
Runs the upper part when True.
Variable 19 Red Output

Type

= Copy and paste Red variable from front.

Wariable Mame

—_— T

115

Operator 20 !Operator

When Red is True it becomes False and vice versa.,

Wariable 21 Red Input

Type
o = When Red variable value is true it becomes false
and vice versa, Changed value is saved.

Variable 22 True Setup

Type

s With the programmed motion been finished after

press button, the BtnEnd should be changed
from false to true.

N N
: iab) Constant |1 2T=TE] Varaie |2

Select Data) Variable module.
Select Type : Contant.

Select Constant Type: Bool
Bool: True or False data type.
Select Constant Value : True

116

B

Wariable

Type

Marme

Button

===

23 BtnEnd to True

Input True value in the BtnEnd .

When BtnEnd value is true and loop is running,
pressed up button will not satisfy the conditional
statement and Red variable value will not change
further.

24 Red LED

Red LED will light when up button is pressed

once and go off when it is pressed once more.

25 Right Button

When Right is pressed.

117

Wariable

26 Green LED

Green LED will light when right button is pressed once
and go off when it is pressed once more,

BLitton 27 Down Button

When down bution is pressed.

28 BluelLED

Blue LED will light when right button is pressed once
and go off when it is pressed once more,

Variable 29 LED Value

Type

—_— ,

- As explained above, LED lights up depending on the
R }3. input value of the LED module, Diagram on the left
- b shows the connected modules according to the input

3 (2] Contans =1 formula (4 x Blue + 2 x Green +1xRed)
Set constant value : 4 .
(4xBue+2xGreen+1xRed)
Select Data) Variable module.
Select Type : Contant .

Select Constant Type: int .
Set Constant Value : 4.

Variable 30 Blue
Type

N (4 xBlue+2x Green+1xRed)

T T Copy the Blue variable from front.
Constant }: €]l Varisbie H ?

31 Multiplication

Operator
Operator Type

(4 xBlue +2x Green+1xRed)

Slect Data) Operator module,

Select Operartor Type : Arithmetic,

Select Arithmetic Operator : X .

S Connect constant 4 and Blue variable module to the
two input connectors of the multtiplication module.

119

Variable

Type

Variable
Type

Operator
Crerator Type

: 7

""_I.... @ ' —I_.Huﬂrnut- Cxgrat

32 Constant 2
(4xBlue+2xGreen+1xRed)
Select Data) Variable module,
Select Type : Contant .

Select Constant Type: int .
Set Constant Value : 2,

33 Green
(4xBlue+2xGreen+1xRed)

Copy the Green variable from front,

34 Multiplication
(4xBlue+2xGreen+1xRed)
Slect Data) Operator module,

Select Operartor Type : Arithmetic.

Select Arithmetic Operator : X .

Connect constant 2 and Green variable module to
the two input connectors of the multtiplication module.

Operator 35 Addition

Operator e

(4xBlue+2xGreen+1xRed)

Select Data) Operator module.

Ailthetic Gperatar Select Operartor Type : Arithmetic.

EI = l Il Select Arithmetic Operator : + .

Connect the output from the multiplication modules
in #31 & 34 to the two input connectors of the
addition module.

Variable 36 Red

Type

(4xBlue+2xGreen+1xRed)

| R—— | Copy Red variable from front,
}::] A H —

Variable

Operator 37 Addition
Cperator Type
2-,,,_ (4xBlue+2xGreen+1xRed)
Slect Data) Operator module,
" . I. ‘ | ArthmEtc Coerator Select Operartor Type : Arithmetic.
e 20 m B = Select Arithmetic Operator : X .
2 + 5 i I

Connect output from the addition module in #35
and Red variable module to the two input connectors
of the addition module.

121

= 38 LED

Maode
2 - Select Motion) LED module,
Select Mode : Controller LED |,

,‘l- n_n Input the values from the previous calculations
@E}: into the LED value to turn on each individual LED.

39 LED Value Output Calculation

(4 xBlue+2xGreen+1xRed)
Shown as connected modules,

Button 4.0 Button Released State
Button Value
= =8 = When the motion associated with the button
L B press ends, BtnEnd variable changes to True.
., E.,, F,.ig.ht Since the motion associated with the button

press does not run when BtnEnd variable is True,
it is possible to make single button press run the
associated motion only once, BitEnd variable has
to be initialized to False when the button is
released. Following program shows how to ini—
tialize the button,

Select Motion) Button module,

Button Value : None,

Released button state.

122 conEEEEEEEEEEE

Variable 41 BtnEnd is True

Type

When BtnEnd is True .

Copy BtnEnd variable from front.

Variable

o
@g% Q x%—.{* -
© I O

Yariable Mame

BtrEnd

42 && Operator

Operator
Operatar Type
Just released button state satisfies both released
button state and BtnEnd True .

2
b Logical Operatar
| 5 : Select Data) Operator module.
| Variable |2 ; E“—@ Select Operartor Type : Logic.
Select Logical Operator : &&
|

Switch 43 If Conditional Statement

Run if just released button state is True.

123

Variable 44 False Value

Type

Change BtnEnd from True to False,

Select Data) Variable module,
Select Type : Contant .

Select Constant Type : Bool
Bool: True or False data type.
Constant Value : False.

Variable 45 Change BtnEnd to False

Tipe

Input False value to BtnEnd .

Copy BtnEnd variable from front,

4.6 Initialize Button When Released

From the just releaed button state, initialize Bt—
nEnd to false .

47 Compile, Downolad, Run

Click ‘Compile’. Click ‘download’ on the right if
there is no compilation error, Download to ro—
bot. Click ‘Run’ button (Arrow button) after the
download.

48 Robot Motion

Up button: Red

Right button: Green

Down button: Blue

LEDs will light up when pressed and go off when
pressed once more,

125

DR-Visual Logic Programming HOVIS

PART
02 Programming Individual Module : Sensor) Light Sensor

Light Example Step by Step
Example Description
This example uses the light luminosity to operate the robot motors.

Robot will lift the left arm when luminosity decreases.

01 Assign Variable
Operating the robot is same as operating the
robot servo motor. Value has to be assigned so

that servo will be able to operate.

Click Data) Variable module,

i
'ariable|

Variable
5%
-

02 Start

Click and drag the connecting line located at left
side of the module to the Start Point and dock.

03 Start Programming

When the module and the Start Point is docked
properly, module will become active and
change color as seen in the photo to the left.
This means programming has started.

light.

i

2

50 SERVO_TaorgCtrl [254] =95
41 joglB12, 0,254, 100)

5 jog(235 0,0, 100)

£ jog(235 0,1,100)

70 jogl 789, 0,3 100)

51 jog(789,0,4,100)

9! delay(1500)
10 whilel true)
1 4
12 il { MPSU_CDSVal < 2000)
13 {
14 jog(700, 0, 0, 20)
=] L

Variable

Constant Type
Bcoo it

Constant Walue

04 Entire Program

Entire program showing the light sensor to operate
the robot motors.

05 Viewing C-Like

Click the ‘Cike’ tab near the top right and task
programming window will open as shown in the
photo to the left. This is the task window of the
entire program. Codes are very similar to the C
language structure so studying the codes will
help the user become familiar with the C language
structure. Cursor will jump follwing the clicked
module, making it easy to see the module changing
to text.

06 Setup Constant

This section allows the servo motor to operate
on it's own.

Select Constant as the Variable Type. In properties,
set constant value as 96.

When 96(0x60) is entered in the servo TorgControl
register, servo becomes ready to operate, This
value is sent to the torque value of the next moduel
through the output connector.

127

Variable 07 Apply to All Servos
Type This section applies contact value 96 to all servos.

2 m Servo RAM |

Select Variable) Type : Servo RAM.

T Select Servo RAM : TorqCirl .

' Set Servo ID : 254, 254 means it will be applied to
all connected servos.

Motor 08 Set Angle to All Servos
Maode
This section sets all servo motor angles to the
' center.

Select Motion) Motor.

e— Select Mode : Positon. adjust angle.

——— | Set Position : 512 . 512 means motor will be sent
<] (>} to the center
F Set Motor ID : 254 . 254 means it will be applied
e to all connected servos.

<] (> Set Time : 100 . 1 unit = 11.2ms, 100 units would
be approximately 1.12s.
It means motors will be positioned at the desired
angle for 1.12s,

Motor 09 Setup Motor ID 0 (Right Shoulder)

Mode

Creating attention posture (Basic Posture)
When all robot motors are aligned to the center,
humanoid robot arms will be stretched out to the
side. Setup below lowers one arm to the side of
the body.

Motor ID
[——

ll_ “ - Select Motion) Motor .

Select Mode : Position,

Time Set Position : 235, 235 turns the motor so that that

I E— . .

= - the arm stretched out horizontally will be lowered
to vertical down position.

Set Motor ID : 0. Right shoulder motor has ID 0

Set Time : 100, Motor will turn to the desired

angle in approximately 1.12s.

128 o

Motor
Mode

Paosition

Motar 1D
[————

o N O

Time

o I O

Motor
Mode

Position A

Motar 1D

a >}
Time

—

< N O

Motor
Mode

Position

| — —
- =
Motor 1D

a >}
Time
p——=a—

O IETE ©

10 Setup Motor ID 1 (Right Arm)

Select Mode : Postion.

Set Position : 235, 235 lowers the horizonally
stretched arm to vertical down position.

Set Motor ID : 1. Right upper arm motor connected
to the should has motor ID 1.

Set Time : 100 . Motor will turn to the desired
angle in apporoximately 1.12s.

11 Setup Motor ID 3(Left Shoulder)

Select Motion) Motor.

Select Mode : Position,

Set Position : 789. 789 turns the motor so that that
the arm stretched out horizontally will be lowered
to vertical down position.

Set Motor ID : 0. Left shoulder motor has ID 3
Set Time : 100. Motor will turn to the desired
angle in approximately 1.12s.

12 Setup Motor ID 4 (Left Arm)

Select Mode : Postion,

Set Position : 789. 789 lowers the horizonally
stretched arm to vertical down position.

Set Motor ID : 4. Right upper arm motor connected
to the should has motor ID 4.

Set Time : 100 . Motor will turn to the desired
angle in apporoximately 1.12s.

129

Delay

Time
',

o I C

Loop
Condition

I—z_

Light Sensor

Compare

13 Delay

This section makes the robot wait untill the robot
is at attention posture and ready to run the next
module.

Select Flow) Delay module.

Set Time : 1.5 . Unit is in seconds,

Delay 1.5s.

14 Loop

Select Flow) Loop module,
Select Condition: Forever,
Infinite loop.

15 Light Sensor

Select Sensor) Light module,

Select Compare : { . Smaller than certain value,
Set Value : 200, Luminosity 200.

Module output is True if the luminosity is smaller
than 200 and False if larger than 200.

Switch

Motor

Mode

Motor ID
S ——
Time
.

O EEET C

Motor
Maode

Paosition

Pasition
e —
= o
Motor 1D
[
o I C
Time
N

O KT O

16 Switch IF Conditional Statement

Run applicable section depending on True or
False value,

17 Setup Motor ID O(Right Shoulder)

Lift right arm if the luminosity is less than 200(True),
If the luminosity is greater than 200(False) keep
current posture with the arm lowered.,

Select Motion) Motor,

Select Mode : Position .

Set Position : 700 . 700 lifts the arm.

Set Motor ID : 0 . Right shoulder moto ID is O
Set Time : 20 .

18 Set Motor ID 0(Shoulder)

Uncover the controller cds sensor and the robot
will go back to the attention posture.

Select Motion)Motor,

Select Mode : Position .

Set Position : 235 . 235 lowers the arm to the side.
Set Motor ID : 0 . Right shoulder motos has ID 0.
Set Time : 40. Arm comes down at slower pace
than when it was going up.

131

18 Download

Click ‘Compile’, Click ‘download’ on the right if
there is no compilation error. Download to robot,
Click ‘Run’ button (Arrow button) after the download.

19 Robot Motion

Robot is at attention posture under the bright light,
Robot will lift the right arm when the controller
cds is covered.

Robot will lower the arm when the cds is uncovered.,

DR-Visual Logic Programming HOVIS

PART
02 Programming Indivdual Module : Sensor) Sound Sensor

Sound Sensor Example Step by Step
Example Description
Sound Sensor is located inside the DRC controller on both sides.

This example will make the robot lift the left arm with left side clap and right arm with the right side clap.

01 Assign Variable
Operating the robot is same as operating the robot
servo motor. Value has to be assigned so that

servo will be able to operate.

Click Data) Variable module,

02 Start

Click and drag the connecting line located at left
side of the module to the Start Point and dock

03 Start Programming

When the module and the Start Point is docked
properly, module will become active and
change color as seen in the photo to the left.
This means programming has started..

133

Do

npliy B i o

=R AT T

SERWD _TorgCirl [25
Jogi B12, 0, 254, 100)
Jogl 735, 0.0,100]
jogl 235, 0,1, 100
jom(709, 0,9, 100]
jogt 783, 0, 4,100 |
delav! 1500}

whilel frug

i

iff, ¢ MPSU_SoundPecogFsg && WP S _SoundCir > 1))
1

Jogl 512, 0.0, 201

delay 500]

jogl 235, 0,0, 409

chelay 15000

cortinue

else

Variable

Type

Sl corsire

Bcool Oint

Constant Yalue

& Input ._— p—

04 Entire Program

Use the sound sensor to operate robot motors.,

05 Viewing C-Like

Click the ‘C—like’ tab near the top right and task
programming window will open as shown in the
photo to the left. This is the task window of the
entire program. Codes are very similar to the C
language structure so studying the codes will
help the user become familiar with the C language
structure. Cursor will jump follwing the clicked
module, making it easy to see the module
changing to text.

06 Setup Constant

This section allows the servo motor to operate
on it's own,

Select Constant as the Variable Type. In properties,
set constant value as 96,

When 96(0x60) is entered in the servo TorgControl
register, servo becomes ready to operate. This
value is sent to the torque value of the next mo—
duel through the output connector.

4

Variable

Type

Servo RAM

v
10 ||'|

TorgCtrl b
(8]

Motor
Mode

Position hd

Position
———————3
a =
Motar ID

P ————

o IEEEN O

Time
———————

© I C

Motor

Mode

Position___ V|

o BN O

Maotor 1D
[—

Time

p———ga————

£ I O

07 Apply to All Servos
This section applies contact value 96 to all ser—
VOS.

Select Variable) Type : Servo RAM.

Select Servo RAM : TorqCirl .

Set Servo ID : 254, 254 means it will be applied
to all connected servos,

08 Set Angle to All Servos

This section sets all servo motor angles to the
center.

Select Motion) Motor.

Select Mode : Positon. adjust angle.

Set Position : 512 . 512 means motor will be sent
to the center

Set Motor ID : 254 . 254 means it will be applied
to all connected servos.

Set Time : 100 . 1 unit = 11.2ms, 100 units would
be approximately 1.12s.

It means motors will be positioned at the desired
angle in 1.12s,

09 Setup Motor ID 0 (Right Shoulder)

Creating attention posture (Basic Posture)
When all robot motors are aligned to the center,
humanoid robot arms will be stretched out to the
side. Setup below lowers one arm to the side of
the body.

Select Motion) Motor .

Select Mode : Position.

Set Position : 235. 235 turns the motor so that that
the arm stretched out horizontally will be lowered
to vertical down position.

Set Motor ID : 0. Right shoulder motor has ID O
Set Time : 100. Motor will turn to the desired
angle in approximately 1.12s.

135

_ 8
- B
-3

4

Motor
Mode

Pasition

Paosition

o IEEE ©

Motor 1D
[————

o IEN. C

Time

O I O

Motor
Mode

Motar 1D

[—————
o IEENEN C
Tirna

O T O

Motor
Mode

Position

Paosition
—
= ~

Motor ID

y
a c

Tirmne

< TN O

10 Setup Motor ID 1 (Right Arm)

Select Mode : Postion.

Set Position : 235. 235 lowers the horizonally
stretched arm to vertical down position.

Set Motor ID : 1. Right upper arm motor connected
to the should has motor ID 1.

Set Time : 100 . Motor will turn to the desired
angle in apporoximately 1.12s..

11 Setup Motor ID 3(Left Shoulder)

Select Motion) Motor .

Select Mode : Position.

Set Position : 789. 789 turns the motor so that that
the arm stretched out horizontally will be lowered
to vertical down position.

Set Motor ID : 0. Left shoulder motor has ID 3
Set Time : 100. Motor will turn to the desired
angle in approximately 1.12s..

12 Setup Motor ID 4(Left Arm)

Select Mode : Postion.

Set Position : 789, 789 lowers the horizonally
stretched arm to vertical down position.

Set Motor ID : 4. Right upper arm motor connected
to the should has motor ID 4.

Set Time : 100 . Motor will turn to the desired
angle in apporoximately 1.12s,

Delay 13 Delay

This section makes the robot wait untill the robot
is at attention posture and ready to run the next
module,

Select Flow) Delay module.

Set Time : 1.5 . Unit is in seconds.

Delay 1.5s.

Time

Loop 14 Loop

Condition

I— 2 — _ Select Flow) Loop module,

Select Condition: Forever,
Infinite loop.

Sound Sensor 1 5 Sound Sensor

Compare

.= Select Sensor) Sound Sensor module,

Select Compare :). Larger than certain value.
Set Value : 0 . Range of the sound loaction is
from —2 to 2. Negative number denotes sound
is from the left and the Positive number from the
right.

Value) 0 denotes that sound is from the right. If
the detected sound is from the right side, Output
is True or False otherwise,

137

3

=

Switch

Motor
Mode

Paosition
| —

o EEETH O

= Motaor [D

[——
a o
Time

@ =
1= o EEEEE C

3

N

[T ‘&)} &3‘_ Motor 1D

4

Motor
Mode

Position

—
o I ©
[
o I C

Time
.

el [

16 Switch IF Conditional Statement

Run applicable section depending on True or
False value,
True if the sound is from the right or False otherwise.

17 Setup Motor ID 1(Right Arm)

True if sound heard from the right side. Robot will
lift right arm,

Select Motion) Motor .

Select Mode : Position .

Set Position : 700 . 700 lifts the right arm.

Set Motor ID : 1. Upper right arm motor ID is 1.
Set Time : 20 .

18 Setup Motor ID 1(Right Arm)

False if no sound is detected or if the sound is
from different location, Maintain attention posture
with arms lowered to the side.

Select Motion) Motor.

Select Mode : Position.

Set Position : 235 , 235 maintains attention pos—
ture. Lowers the arm to the side if it was lifted up.
Set Motor ID : 1. Upper right arm motor ID is 1.
Set Time : 40 . Arm comes down at slower pace
than when it was going up.

138

Sound Sensor

Compare

2-Com =

Switch

Motor
Mode

Position
| — —
(4] (>
Motor ID
-
a >}
Time
'y

- -
o >

19 Sound Sensor

Select Sensor { Sound Sensor module.

Select Compare : . Larger than certain value.
Set Value : 0 . Range of the sound loaction is
from —2 to 2. Negative number denotes sound
is from the left and the Positive number from the
right,

Value { 0 denotes that sound is from the left, If
the detected sound is from the left side, Output
is True or False otherwise,

20 Switch IF Conditional Statement

Run applicable section depending on True or
False value.
True if the sound is from the left or False otherwise.

21 Setup Motor ID 4 (Left Arm)

True if sound heard from the left side. Robot will
lift left arm.

Select Motion) Motor .

Select Mode : Position .

Set Position : 324 . 324 lifts the left arm.

Set Motor ID : 4 . Upper left arm motor ID is 4.
Set Time : 20 .

139

Motor
Maode

Position

Position

Maotar 1D
[e———

o IEEEE C

Time
.

O I C

22 Setup Motor ID 4 (Left Arm)

False if no sound is detected or if the sound is
from different location. Maintain attention posture
with arms lowered to the side..

Select Motion) Motor,

Select Mode : Position.

Set Rosition : 789 . 789 maintains attention posture, Lowers
the am to the side if it wess lifted up.

Set Motor ID : 4, Upper left arm mator D is 4,

Set Time : 40 . Arm comes down at slower pace
than when it was going up.

23 Compile, Download, Run

Click ‘Compile’. Click ‘download’ on the right if
there is no compilation error, Download to robot.
Click ‘Run’ button (Arrow button) after the download.

24 Robot Motion
robot will lift the left arm with left side clap and

right arm with the right side clap.

141

B DR-Visual Logic Programming HOVIS
02 Programming Individual Module : Sensor Y Sound Sensor{Advanced)

Sound Sensor(indepth) Example Step by Step

Example Description

Sound Sensor is located inside the DRC controller on both sides.

First sound program made the robot lift it's left or right arm in response to the location of the clapping sound.

Robot may have difficulty distinquishing the direction of the clap when there is lots of background noise. It may respond
by lifting both arms to a single clap from one direction or respond erratically. More refined programming is required to
make the robot to respond more reliably regardless of the background noise. Refining the program by forcing a DELAY

after registering the first sound so that it will not receive anymore sound input will increase the reliability.

?

Operating the robot is same as operating the robot
servo motor. Value has to be assigned so that
nl| — servo will be able to operate.
s

f‘\

01 Variable Setup

Click Data) Variable module,

ariable

-

02 Start

Click and drag the connecting line located at left
side of the module to the Start Point and dock

03 Start Programming

When the module and the Start Point is docked
properly, module will become active and change
color as seen in the photo to the left. This means
programming has started..

04 Entire Program

Program increases the sensitivity of the sound
sensor to make the robot response more reliable.,

C-like 05 Viewing C-Like

i Click the ‘C—like’ tab near the top right and task
3 SERWDI_TorgCirl (23 programming window will open as shown in the
At jogl B12, 0, 254, 100) o]

5 i jnal 738, 0. 0,100] photo to the left. This is the task window of the
B | jogt 255, 0, 1, 100] . _

7 jsgg 769, 0, 5, 100) entire program. Codes are very similar to the C
35 Jt'fflgj?%gn'; 100 language structure so studying the codes will
1a g *{*h“ef frue) help the user become familiar with the C language
iz iff { MPSU_SoundRecogfag 86 MPSU_SoundDir > 1)) structure. Cursor will jump follwing the clicked
15! . .

4] f Jogt 512, 0. 0, 20 module, making it easy to see the module
15 celay: 500] 7

6| 1o 25, 0.0, 40} changing to text,

174 clelavi 1500}

18 cortinue

19

il elze

Variable

06 Setup Constant
Type
2 w This section allows the servo motor to operate

on it's own,

Select Constant as the Variable Type. In properties,
set constant value as 96.

When 96(0x60) is entered in the servo TorgControl
register, servo becomes ready to operate. This
value is sent to the torque value of the next moduel
through the output connector,

Constant Type
Bcool Oint

tant Walue

143

4

Variable

Type

Servo RAM

v
n ||'|
TorgCtrl b
(8]

Motor
Mode

Position hd

Position
——————
= C
Motor 1D
L —

o EEEZENN O

Time
[

o I O

Motor

Mode

Position___ V|

o BN O

Maotor 1D
[—

Time

p———ga————

£ I O

07 Apply to All Servos
This section applies contact value 96 to all servos.

Select Variable) Type : Servo RAM.

Select Servo RAM : TorqCirl .

Set Servo ID : 254, 254 means it will be applied
to all connected servos,

08 Set Angle to All Servos

This section sets all servo motor angles to the
center,

Select Motion) Motor.

Select Mode : Positon. adjust angle.

Set Position : 512 . 512 means motor will be sent
to the center

Set Motor ID : 254 . 254 means it will be applied
to all connected servos,

Set Time : 100 . 1 unit = 11.2ms, 100 units would
be approximately 1.12s.

It means motors will be positioned at the desired
angle in 1.12s.

09 Setup Motor ID 0 (Right Shoulder)

Creating attention posture (Basic Posture)
When all robot motors are aligned to the center,
humanoid robot arms will be stretched out to the
side. Setup below lowers one arm to the side of
the body.

Select Motion) Motor .

Select Mode : Position.

Set Position : 235. 235 turns the motor so that that
the arm stretched out horizontally will be lowered
to vertical down position.

Set Motor ID : 0. Right shoulder motor has ID O
Set Time : 100. Motor will turn to the desired
angle in approximately 1.12s.

144 puEEEEEEEEEEEEE

_ 8
o 15
.

4

Motor
Mode

Pasition

Paosition

o >

Motor 1D
[————

o IEN. C

Time

O I O

Motor
Mode

Position______ |

Motor
Mode

Paosition

Maotar ID

-
a >

Time
———,————

< IETE O

10 Setup Motor ID 1 (Right Arm)

Select Mode : Postion.

Set Position : 235. 235 lowers the horizonally
stretched arm to vertical down position.

Set Motor ID : 1. Right upper arm motor connected
to the should has motor ID 1.

Set Time : 100 . Motor will turn to the desired
angle in apporoximately 1.12s...

11 Setup Motor ID 3 (Left Shoulder)

Select Motion) Motor .

Select Mode : Position.

Set Position : 789. 789 turns the motor so that that
the arm stretched out horizontally will be lowered
to vertical down position.

Set Motor ID : 0. Left shoulder motor has ID 3
Set Time : 100. Motor will turn to the desired
angle in approximately 1.12s..

12 Setup Motor ID 4 (Left Arm)

Select Mode : Postion.

Set Position : 789. 789 lowers the horizonally
stretched arm to vertical down position.

Set Motor ID : 4. Right upper arm motor connected
to the should has mator ID 4.

Set Time : 100 . Motor will turn to the desired
angle in apporoximately 1.12s..

145

Delay 13 Delay

This section makes the robot wait untill the robot
is at attention posture and ready to run the next
module.

Select Flow) Delay module,

Set Time : 1.5, Unit is in seconds,

Delay 1.5s.

Time

14 Loop ==

Loop
Condition
Select Flow) Loop module,
Select Condition: Forever.,
Infinite loop.

Sound Sensor 1 5 Sound Sensor
Select Sensor) Sound Sensor module,
Select Compare :) .

Set Value : 1.

Median sound value is 0. However, setting the
value to 1 will decrease the sensitivity so that only
the sound larger than 1 (loud noise from the right)
will be registered. This will prevent the robot from
responding to the background noise or lifting
both arms,

146 o

16 Switch IF Conditional Statement

Proceed only if the previous condition is True.

Motor 17 Setup Motor ID 0 (Right Shoulder)
Mode
= Lift right arm if True; the sound loation value is
greater than 0. There are times when the other
F; — arm may start to move due to background or
o ST motor noise. This program prevents the other

P arm from moving when one arm is already in
MloTor J

— mototion,
o I o
= Select Motion) Motor module.
Ime
P — Select Mode : Position .
4 (<] [»] Set Position : 512, Both arms streched out.
Set Time : 20
Robot ams lift up to 90 degrees angle from the attention
posture,
Delay 18 Delay

Time
N
— | - Whle the arm is moving, other arm may start to
2~ o O o g

ﬁ ol] move or the moving arm may respond again to

(& %E the background noise. Delay is added to prevent
SRR such occurences while the arm is in motion.

No other motion is allowed during the 0.5s of

Delay except for the right arm.

147

Motor
Mode

7. -

.

— e e Position
7 EI e *g 5 EI |3 —_—
‘cEn - oSN C

Motar ID
[—

o I C
Time

4" o I C

Delay

Time

'

F—1= e o

~ -

Continue

19 Motor ID 0 (Right Shoulder) Return to
Attention Posture.

Lower the arm back to attention posture.
Select Motion) Motor module,

Select Mode : Position .

Set Position :235. Return to attention posture

Set Time:40.

Return right arm to attention posture.

20 Delay

Add Delay to prevent any other motion after return—
ing to attention posture,

When 1.5s Delay value is added. Robot will not
move or register sound during the delay. Robot
will respond to sound again after the Delay.

21 Continue

Return to the beginning of the loop after 1.5s Delay.

Sound Sensor

Cornpare

B—o|ls & =

Switch

22 Summary
Just completed program blocked certain external
stimulus from being registered by the robot. This

increased the reliability of the robot response to
the sound coming from the right direction.

23 Sound Sensor (2nd)

Setup second sound sensor. Left arm will respond
to the sound coming from the left.

Select Sensor) Sound Sensor module.,

Compare : ¢ .
Value : —1 . Respond when smaller than —1.

24 Switch IF Conditional Statement

Proceed only if the previous condition is True.

149

o]E“

(o

Motor
Mode

Pasition
—
= =
Motor ID
[————
a >

Time

o IE. C

Delay

Time

Motor
Mode

Position
—
o >
Motor 1D
[——

a >
Time
e,

< I C

25 Setup Motor ID 3 (Left Shoulder)

True if the sound location value is less than —1.Lift
left arm to steched out position.

Select Motion)Motor module,

Set Mode : Position .

Set Position: 512 .

Shoulder angle is 789 when in attention posture.
Arm becomes streched out to the side when the
angle changes from 789 to 512,

Set Time: 20.

26 Delay

Whle the arm is moving, other arm may start to
move or the moving arm may respond again to
the background noise. Delay is added to prevent
such occurences while the arm is in motion.

No other motion is allowed during the 0.5s of
Delay except for the right arm.

27 Motor ID 3 (Left Shoulder) Return to
Attention Posture.

Set Motor ID 3 Position to 789 and return to at—
tention posture,

Delay

Tirmne
|

o EEECE ©

28 Delay

Add 1.5s Delay value to prevent other motions.

Motor ID 3 does not have Continue as Moto ID
0 since this is the end of the loop and progrm
will automatically go back tothe beginning of the
loop.

29 Left Arm Response

When robot registers a clap from the left, it will
lift the left arm and then go back to the attention
posture. Delay value makes the robot respond
only to the first clap it registers. All other sounds
all claps will be ignored. This refinement allows
the robot to resopond more reliably in noisy
environment.

30 Compile, Download, Run

Click ‘Compile’, Click ‘download’ on the right if
there is no compilation error, Download to robot.
Click ‘Run’ button (Arrow button) after the down—
load..

151

31 Robot Motion
robot will lift the left arm with left side clap and

right arm with the right side clap.

Clap clap

e DR-Visual Logic Programming HOVIS
02 Programming Individual Module : Sensor) Digtal Distance Sensor

Digital Distance Sensor Example Step by Step

Example Description

Analog sensor is capable of detecting the actual distance from an object whereas digital sensor uses specific distance as
a reference to judge how far or near it is from the reference distance. Robots with wheels use the sensor for cliff detection
more often than for object avoidance and humanoid robots with moving legs use the sensor for object avoidance rather than
for cliff detection. This example will use the sensor for object detection and avoidance. Compare the program and the result
with the analog sensor program. When the robot nears the wall, it will move backwards, change direction and move forward

again. This example requires digital distance sensor to be installed at ADC port #1 (left).

01 Assign Variable
Operating the robot is same as operating the robot
servo motor. Value has to be assigned so that

servo will be able to operate.

Click Data) Variable module,

02 Start

Click and drag the connecting line located at left
side of the module to the Start Point and dock

03 Start Programming

When the module and the Start Point is docked
properly, module will become active and change
color as seen in the photo to the left. This means
programming has started..

153

S BTN B

11 void main()

29

3! SEHVO_ToqutrI[ZEMI Click l

4 motionreadyl 0)

51 delay(1500)

i whilel true)

7 {

81 ifl { MPSU_ADCType! == 2 && MPSL_ADCVYall == 1))
9 {

10! motion{ 0}

11 waitwhile(MPE_Playinghdation)

121 t

131 else

14 {

15 : ifl { MPSU_ADCTypel == 2 8& MPSU_ADCYall ==0))
15! i

171 far(i=1~2)

158 {

19 motion{ 1}

Variable

Type

Selcijgcersie

3 —
; =] Servo RAM k)
Constant Type
Bcool [® Jigs

Constant Yalue

£] Input [P

04 Entire Program

Entire program using the digital sensor.

05 Viewing C-Like

Click the ‘Clike’ tab near the top right and task
programming window will open as shown in the
photo to the left. This is the task window of the
entire program. Codes are very similar to the C
language structure so studying the codes will
help the user become familiar with the C
language structure, Cursor will jump folwing the
clicked module, making it easy to see the module
changing to text.

06 Setup Constant

This section allows the servo motor to operate
on it's own.

Select Constant as the Variable Type. In properties,
set constant value as 96.

When 96(0x60) is entered in the servo TorgControl
register, servo becomes ready to operate, This
value is sent to the torque value of the next moduel
through the output connector.

Variable

Type

Servo RAM '

¢ 1
(8]
= o

Motion Indes

Otue WBFake

07 Apply to All Servos
This section applies contact value 96 to all servos.

Select Variable) Type : Servo RAM.

Select Servo RAM : TorqCtrl,

Set Servo ID : 254, 254 means it will be applied
to all connected servos,

08 Motion Ready

Robot goes through a prepatory stage before
starting the next motion, This prepatory stage allows
the robot to move slowly to the the initial position
of the motion to be run. This prevents stress or
damage from sudden change in motion.

IF Motion Ready is True prepare for next motion.
Run next motion if False,

Select Motion) Move module,
Select Play/Stop : Play.

Set Motion Index : 0 . walk forward
Select Motion Ready : True.

Motion Ready Stage

09 Delay

Set delay to 1.5s to prevent next step from staring
before Motion Ready ends.

155

Loop

10 Loop

Condition

Select Loop: Forever
L

Distance Sensor 11 Setup Digital Distance Sensor
Si ype
Digital sensors have different measuing distance.
Port Setup with 20cm as standard.
m:
Select Sensor) Distance Sensor module,
Select Sensor Type : Digital Infrared.
Select Port : 1,

e Set Value : 1. farther than 10cm.
]

4" o I

12 If Conditional Statement

Proceed if True, go to next conditional statement if
False.

13 Forward

[
wpsu Rau [Robot will move forward since the distance is
PlayingMation

— greater than10cm.,
e When False is selected as Motion Ready value,
o “ o robot will proceed with forward motion.

Motion Ready

B OFae

14 Motion Movement Check

e Loop refers to continuous repetition, It takes time
2 for the actual motion to complete after Move

MPSU FLAM command has been issued, but loop with single
move module will continue to run and give motion
command even while the previous motion is still
running. The lag in actual motion will result in
difference between the number of motion commands
given by the move module and the number of
actual motions. To correct this difference, loop will
need to wait for the motion to complete before
repeating the process.Playing Motion’ is found
within Variable) MPSU RAM Data. ‘Playing Mation’
is a variable that checks whether the motion is in
process. Loop will wait for the current motion to end
if ‘wait’ is added to the ‘Playing Motion’.

Variable

MPSU RAM
Playinghation

Select Data) Variable Module,

Select Type : MPSU RAM Data

Select MPSU RAM : Playing Motion

Add Wait module to the output connector,

Data) Variable,
Type : MPSU RAM Data,
MPSU RAM : Playing Motion,

15 Wait

I }: ﬂg Wait untill the motion ends.

Go to the begining and repeat when motion
ends.

157

Distance Sensor 1 6 Motion Near The Wall
—

When the robat is less than 10cm from the wall,

o program will make the robot walk backwards and
1 2

change direction,

Select Sensor) Distance Sensor module.
Select Sensor Type : Digital Infrared .
Select Port - 1.

Set Value : 0 . Within 10cm distance,

17 If Conditional Statement

Run statement within True if less than 10cm from the

wall,
Loop 18 For Loop
Condition
Far i Repeat certain motion untill the condition is met.
Variable MName Motion #1 is a walk backwards motion, walk

backwards motion makes the robot take one step
backward each using left and rigt feet.

Robot can be moved to the desired location by
adding For statement to the motion to repeat the
motion desired number of times,

Select Flow) Loop module,
Select Condition : For .

Set Variable Name: i .

Set Variable Range(Start) 1 .
Set Variable Range(End) 2 .
Repeat motion twice.

1 S S

19 Walk Backwards
#lis a walk backwards motion.
Robot will run the walk backwards motion if False

is selected.
‘ Maotion Indes:
MPS ; -
I Playingation n n
_|7— Motion Ready

BT DOFase
Variable 20 Check Motion

Type

MPSU RAM Data _ _ _
T Use Playing Motion to check the robot motion.

l When the motion ends, return to the start of the
x S ‘ 3 For statement.

MPSU RAM :|

PIa\rlonotlon I

21 Repeat Backwards Motion Twice
[_ Y |

s RAM #—@ ‘ Program makes the robot repeat the walk backwards
I PlayingMation l

motion twice.

159

Motion Index

22 Right Turn

Robot motion #3 makes the robot change direction to
the right. Right tum motion can be controlled by using
the For statement . Seletct motion #3, set For statement
from 1—=3 and program as above.

23 Entire Program

Program make the robot walk froward when the
distance to the wall is greater than 10cm . If the
distance is less than 10cm, robot will repeat the
backward and right turn motion according to the For
statement and avoid the obstacle.

24 Compile, Download, Run

Click ‘Compile’. Click ‘download’ on the right if
there is no compilation error. Download to robot.
Click ‘Run’ button (Arrow button) after the download.

25 Robot Motion

When detects a wall within 10cm, it will walk
backwards, change direction to the right and
start walking forward again,

B DR-Visual Logic Programming HOVIS
O 2 Programming Individual Module : Sensor) Analog Distance Sensor

Analog Distance Sensor Example Step by Step

Example Description

This example program is an obstacle avoidance program that uses analog sensor to make the robot avoid hitting an obstacle by
turning to the left. Hovis Lite has two type of distance sensors, analog and digital. Digital sensor uses specific distance (10cm)
as a reference and it can only determine if an object is within or beyond the reference range. On the other hand, analog sensor

is capable of detecting an object within 6~80cm range. This example requires PSD sensor to be installed at ADC port #1 (left).

01 Assign Variable
Operating the robot is same as operating the robot

servo motor. Value has to be assigned so that
servo will be able to operate,
- - Click Data) Variable module,
i !

atiable

f‘\

-

02 Start

Click and drag the connecting line located at left
side of the module to the Start Point and dock

03 Start Programming

When the module and the Start Point is docked
properly, module will become active and change
color as seen in the photo to the left. This means
programming has started..

04 Entire Progam

Entire program using the analog sensor to make
the robot avoid hitting an obstacle.

n C-like 05 Viewing C-Like

11 void main()

2 Click the ‘C—like’ tab near the top right and task
3 SEHVO_TquCtrI[ZEﬂ][Click]) i)]

4 motionready 0 programming window will open as shown in the
g i delay(1500) photo to the left, This is the task window of the

: whilel true)

i i entire program. Codes are very similar to the C
g ifl { MPSU_ADCTypel == 1 && MPSU_ADCYall = 20))) .
9! i language structure so studying the codes will
}]” i ' motion(0) help the user become familiar with the C language
12 else structure. Cursor will jump follwing the clicked
ER { L

14 il { MPSU_ADCType! == 1 8% MPSU_ADCVall < 20)) module, making it easy to see the module
15 i .

i S changing to text.

171 t

18 elze

ER i
20 L

Variable

06 Setup Constant

Type
This section allows the servo motor to operate

74Selec
on it's own,
_ Select Constant as the Variable Type. In properties,

set constant value as 96.
Af‘ ™ _ When 96(0x60) is entered in the servo TorgControl
STE Sarva BAM [register, servo becomes ready to operate. This
e value is sent to the torque value of the next moduel

(] _ > through the output connector.,

Constant Type
Bcool [® Jigs

Constant Yalue

£] Input [P

163

Variable

Type

Servo RAM '

S L8
TorgCtrl hd
5 (8]

Motion Indes

-
. ————
S"' - % | o I O

Delay
Time

Jj
oy el

07 Apply to All Servos

This section applies contact value 96 to all servos.

Select Variable) Type : Servo RAM.

Select Servo RAM : TorqCirl .

Set Servo ID : 254, 254 means it will be applied
to all connected servos,

08 Motion Ready

Robot goes through a prepatory stage before
starting the next motion. This prepatory stage
allows the robot to move slowly to the the initial
position of the motion to be run. This prevents
stress or damage from sudden change in motion,
IF Motion Ready is True prepare for next motion.
Run next motion if False,

Select Motion) Move module,
Select Play/Stop : Play .

Set Motion Index : 0 . walk forward
Select Motion Ready : True .
Motion Ready Stage

09 Delay

Set delay to 1.5s to prevent next step from staring
before Motion Ready ends.

E
- 10 Loop

Condition

Forever hd

Select Loop: Forever

Infinite loop.
tance Sensor 11 Setup Analog Sensor
5 P
2 Setup with 20cm as standard.
o:| m: Select Sensor) Distance Sensor module,
_____Ipsisilee '* ‘t- CaEaE Select Sensor Type : Analog Infrared
Select Port : 1.
Select Compare :)= . True if equal to or greater
== than standard

Set Value : 20 . 20cm .

12 If Conditional Statement

Proceed if True or go to the next conditional
statement if False.

165

MPSU RAM
Playinghation

Distance Sensor
Si]
2—
r Part
3-‘] «FIl E

b |

Compare

T [i-0 =
|

Switch

13 Forward

Robot will move forward since the distance is
farther than 20cm.

When False is selected as Motion Ready value,
robot will proceed with forward motion,

14 Motion Near The Wall

Robot will make a left tum if it detecs an obstacle within
20cm,

Select Sensor) Distance Sensor module,
Select Sensor Type : Analog Infrared .
Select Port : 1.

Select Compare : € . True if less than standard,
Value : 20 . 20cm .

15 If Conditional Statement

Run statement within True if less than 20cm from the
obstacle,

MPSU RAM

% 16 Left Turn

PlayingMotion Pla b
|___ . Robot motion #2makes the robot change direction to

PO ISR the left, Robot will run the left tum motion if the Motion
Ready value is False.

B DFake

17 Motion According to Distance

If the distance to the obstacle is greater than 20cm,
robot will keep moving forward, f the distance is less
than 20cm, robot will make a left tum,

18 Motion Movement Check
Loop refers to continuous repetition. It takes time
2 for the actual motion to complete after Move
WL RAM command has been issued, but loop with single
move module will continue to run and give motion
command even whike the previous mation is still running,
The lag in actual motion will result in difference
between the number of motion commands given
by the move module and the number of actual
motions. To correct this difference, loop will need
to wait for the motion to complete before repeating the
process. Playing Motion’ is found within Variable
> MPSU RAM Data. ‘Playing Motion’ is a variable
that checks whether the motion is in process.
Loop will wait for the current motion to end if ‘wait’
is added to the ‘Playing Motion’.

| Variahle
Typ=

Select Data) Variable Module.

Select Type : MPSU RAM Data

Select MPSU RAM : Playing Motion

Add Wait module to the output connector.

E———— . | 6 7

19 Wait

Wait untill the motion ends.
Go to the begining and repeat when motion
ends.

20 Compile, Download, Run

Click ‘Compile’, Click ‘download’ on the right if
there is no compilation error. Download to robot.
Click ‘Run’ button (Arrow button) after the down—
load..

21 Robot Motion

Robot will walk forward and then make a left turn if it
detects an obstacle within 20cm distance,

AT DR-Visual Logic Programming HOVIS

02 Programming Individual Module : Sensor) Dynamics Sensor

Acceleration Sensor Example Step by Step

Example Description

Use the Acceleration sensor to make the robot stand when it falls forward or backward.

Acceleration sensor is attached to a module type board that also has Gyro sensor attached to it. Sensor module can be installed inside
the controller by opening the controller back cover .

® When the robot is in prone position (lying face down), Z axis “-“ acclerates and it's value is approxi-

mately - 4096.

® When the robot is in supine position (lying on the back), Z axix “+“ accelerates and it’s value is ap-

proximately 4096. (4096 is approximately 1g force of gravity value.)

e 169

01 Assign Variable

Operating the robot is same as operating the ro—
bot servo motor, Value has to be assigned so that
servo will be able to operate.

L} —_—
m Click Data) Variable module,

ariable
(=]

02 Start

Click and drag the connecting line located at left
side of the module to the Start Point and dock

03 Start Programming
When the module and the Start Point is docked
properly, module will become active and change
color as seen in the photo to the left. This means
programming has started..

04 Entire Program
Entire program using the accleration sensor to
make the robot stand after falling.

2l C-like 05 View C-like

1 void main()

2 Click the ‘C—like’ tab near the top right and task
3 SEFIVO_TquCtrI[254]I Click l

3! mationready(0 programming window will open as shown in the
- et photo to the left. This is the task window of the
7 { entire program, Codes are very similar to the C
g 'f(EHESHAOGISRE], w52 S RSO ADGYASs k) language structure so studying the codes will
10} mation(0) help the user become familiar with the C language
11 waitwhilel MPSU_Playinghotion) L . .

12} v structure, Cursor will jump follwing the clicked
}i {E'SE module, making it easy to see the module
15 il { MPSLU_ADCType! == 2 && MPSU_ADCYall == 0} changing to text.

16! 1

17 far(i=1~2)

158 1

19 motion(1]

Variable

06 Setup Constant
Tze This section allows the servo motor to operate
on it's own.

7dSelect
Select Constant as the Variable Type. In properties,
_ set constant value as 96.

When 96(0x60) is entered in the servo TorgCon—

Af‘ 8 _ trol register, servo becomes ready to operate. This

STE Servo RAM | value is sent to the torque value of the next moduel
e through the output connector.

Constant Type
Bcool [® Jigs

Constant Yalue

£] Input [P

171

Variable 07 Apply to All Servos

Type

|

This section applies contact value 96 to all servos.

Select Variable) Type : Servo RAM.

Select Servo RAM : TorqCirl .

Set Servo ID : 254, 254 means it will be applied
to all connected servos,

08 Loop

Loop
Condition

Select Flow) Loop module,
Select Condition: Forever,

Infinite loop.
Dynamic Sensor 09 Acceleration Setup (Prone)
Sensor Type
Acceleration hes value of O when the robot is sianding
up straight,

When the robot is in prone posttion it has value of
—4096 and +4096 when in supine position.

If the accleration value is near —4096, it can be
assumed that the robot has fallen forward. Set
—3500 as standard value.

Compare

if the value is less thant —3500, robot is assumed to
have fallen forward.

AL o7 |
Select Sensor) Dynamic Sensor module,
Select Sensor Type : Acceleration
Select Axis 1 Z .
Select Compass : { .
Set Value : =3500 .

172 conEEEEEEEEEE

Play

Motion Index
j———

= EEEE ©
Motion Ready

Qe Brie

10 If Conditional Statement

Robot gets up backward when True, Proceed to
next conditional statement if False.

11 Run Up Backwards Motion

Insert Up Backwards motion when the robot is in
prone position.
Motion #5 is up backward motion.

Select Motion) Move module.
Select Play/Stop : Play .

Set Motion Index : 5

Select Motion Ready : True
Prepatory stage for motion.

12 Delay

Set delay to 1.5s to prevent next step from staring
before Motion Ready ends.

173

Motion Indesx

'y 000
(< o
Motion Ready

B DOFae

Dynamic Sensor

l- S al=]
2

e 0

o ¥
Compare
= 8 =

13 Run Up Backwards Motion
When False is selected as Motion Ready value, robot
will run the up backwards motion.,

14 Setup Gravity Acceleration (Supine Po-
sition)

Gravity acceleration has value of 0 when the robot
is standing up straight.

When the robot is in prone position it has value of
—4096 and +4096 when in supine position,

If the accleration value is near 4096, it can be
assumed that the robot has fallen backward. Set
3500 as standard value.

Select Sensor) Dynamic Sensor module,

Select Sensor Type : Acceleration
Select Axis : Z .

Select Compass :) .

Set Value : 3500 .

15 If Conditional Statement

Robot gets up if True.

16 Motion Ready

Robot goes through a prepatory stage before
starting the next motion. This prepatory stage al—
lows the robot to move slowly to the the initial
position of the motion to be run, This prevents
stress or damage from sudden change in motion.
IF Motion Ready is True prepare for next mo—

OTrue Brile . . .
° tion. Run next motion if False

Select Motion) Move module.

Select Play/Stop : Py .

Select Motion Index : 4 . Motion # 4, robot gets up
forward.

Select Motion Ready : True .

Motion readly stege.

e 17 Delay

_—
B B] Time
& 4 z/ IZI & \% fo—— Set delay to 1.5s to prevent next step from staring
before Motion Ready ends,

(2

18 Run Up Forward Motion

When False is selected as Motion Ready value, robot
will run the up forward motion,

Motion Indesx

e
<] >
Mation Ready

B DOFfae

175

—{“-

MPSU R.AM . !

I X
I Playinghation

Variable
Type
MPSLI RaM Data 4
MPSL RAM
Playingotion b

19 Getting Back Up

Robot determines if it has fallen by referencing the Z
axix acceleration value and runs the appropriate motion
to get back up.

20 Motion Movement Check

Loop refers to continuous repetition. It takes time
for the actual motion to complete after Move
command has been issued, but loop with single
move module will continue to run and give motion
command even while the previous motion is still
running. The lag in actual motion will result in difference
between the number of motion

commands given by the move module and the
number of actual motions. To correct this difference,
loop will need to wait for the motion to complete
before repeating the process.Playing Motion’ is
found within Variable) MPSU RAM Data.
‘Playing Motion’ is a variable that checks whether
the motion is in process. Loop will wait for the
current motion to end if ‘wait' is added to the
‘Playing Motion’,

Select Data) Variable Module,

Select Type : MPSU RAM Data

Select MPSU RAM : Playing Motion

Add Wait module to the output connector.

21 Wait

Wait untill the motion ends.
Go to the begining and repeat when motion
ends.

22 Entire Program

Robat detremines if it has fallen backwards or forward
and runs the appropriate motion to get back up.

23 Compile, Download, Run
Click ‘Compile’. Click ‘download’ on the right if

there is no compilation error. Download to robot.
Click ‘Run’ button (Arrow button) after the download.

177

24 Robot Motion

If the robot is in prone position, it gets back up
backwards. If it is in supine position, it gets back
up forward.

e DR-Visual Logic Programming HOVIS
02 Programming Individual Module : IRReceive, Sound & Motion

IRReceive, Sound & Motion Example Step by Step
(Explain by Sound examples, skip the explaination of motion examples, Data Match for Remote Controller)

Data figure from IR Recieve Module shall match the key from on the right side of remote controller,

IR Receive :;:- -:;,L: P
Length b u \ E ?{.
. -
= a A5 A2
Data ot T 2
__I'- J'-"\'-_ ._.--
(o1) (02) (o3)
e 'h_."' T
® ® @
{ [|
b - -"‘l -"li l.'\-\. .-"

Hovis remote control keymap is as shown in the picture to the right. If/— I/_'“'\ 'I'"‘x
13| X | |18
IR Receive module data values correspond to numbers in the right Y x___._F,.-’

For example, if the top right power button is pressed, Data O is oI -

received by the DRC. Robot can be programmed to take certain L Qo) (ad

action when ever the power button is pressed by setting the Data to :;]-aj ﬁ?‘- -";u‘.

0 in the IR RECEIVE module and connecting to Switch module input e _m"‘"’i“:"' g
M) 15

A
., A
s
¢

Channel setting

Bothe the Remote control channel and DRC channel is user selectable but selected channel in DRC must match
the remote controller channel in order for DRC to receive data from the remote control. Remote control channel
can be selected by pressing 1~~0 number + OK button simultaneously. DRC channel is selected by changing the
RmcChannel value in MPSU Ram Data. RmcChannel values corresponding to remote control numbers are as follows,

__l'

P
=3
_.l'

l®@ ®]

‘ XX

o)
) cs_ﬂ GibY) ‘
@O @@ |
oou |ooo
@ ® O @r} @ @) |
" @oﬂ?O csm:} | @ @ ® |

|| DN H Remote Control Button RmcChannel Value

@.@ | | @@ | 0+OK 97(0x61)

| ||..~ 5 @ ...| 140K 98(0x62)
| e 2+0K 99(0x63)
ucPagcplll |"K_)an3@..

3+0K 100(0x64)
|I |' (_) O C*" |I || .I Q (o8) {_) f | 440K 101(0x65)
| ®© @ | \® ®

f 5+0K 102(0x66)
“ W, A I I||| i
.“ *_HovIS j:;-; | | HI]U]S J ..' 6+0K 103(0x67)
| R | I
I:III T |II| Illll IIIII 7+OK 1 04(0X68)
L\ / Y i 8+OK 105(0x69)
", P i 4

. P S L 9+0K 106(0x6A)

Example Description
This example associates remote control number button to a music note and outputs Do,Re,...Do (1~8) notes.
Note pictch is dependent on the value of the Note Pitch in Motion) Sound module. DRC controller has total of 38 pitches

from 0~37 and it is able to ouptut total of 3 octaves.

00 Sound Property Window

Sound

Made Select Motion) Sound module,

Mode has Melody & Note. Melody selects and
plays one of the saved edited notes.

Note Mode is selected to use the 36 note pitches.

Refer to the table below

1 n _ B Note Pitch from 0~37 can be selected. Note
M ﬂ pitches comprise total of of 3 octaves.
[ﬂ Mote Pitch Note Length refers to the beat. Thirty—second
P note to the whole note can be selected.
Refer to the table below

o EEEE C
Mote Length
——

O EEEN O

Note Pitch

o

NA

1 2 3 4 5 6 7 8 9 10 1 12

Do Dott Re Re# Mi Fa Fa#t Sol Sol# La La# Si

13 14 15 16 17 18 19 20 21 22 23 24

Do Dot Re Re# Mi Fa Fa#t Sol Sol# La La# Si

25 26 27 28 29 30 31 32 33 34 35 36 37

Do Dot Re Re# Mi Fa Fat#t Sol Sol# La La# Si Do

181

Note Length

6 12 18 24 36 48 72 96 144 192
38.4 76.8 115.2 153.6 230.4 307.2 460.8 614.4 921.6 1228.8

32 16 16 dot 8 8 dot 4 4 dot 2 2 dot Whole
note note note note note note note note note note

01 Assign Variable
Select Data) Variable module,

=
@

02 Start

Click and drag the connecting line located at left
side of the module to the Start Point and dock

03 Start Programming

When the module and the Start Point is docked
properly, module will become active and change
color as seen in the photo to the left. This means
programming has started..

04 Entire Program

Entire program using the remote control and the

buzzer,
C-lik
Bl L -HEE 05 Viewing C-Like
1 1 void main()
24 Click the ‘C—like’ tab near the top right and task
S scale=0 H . . . q
4; whilel { I{ MPSU_R Click B && MPSU_PmcData == 0))) programming window will open as shown in the
2 { - photo to the left, This is the task window of the
G rmcReceived=false
7 ifl { WMPSU_RmcLength >= 0 && MPSU_RmcData == 1)) entire program. Codes are very similar to the C
81 { . .
3! scale=75 language structure so studying the codes will
i : rmeRecelved=true help the user become familiar with the C language
121 else structure, Cursor will jump follwing the clicked
}ﬁ ; module, making it easy to see the module
15 if{ { MPSU_RmcLength »= 0 && MPSU_RmcData == 2}) changing to text,
16! {
17 scale=27
181 rmcReceiveds=true
191 '
20 elze
21 {
22 t
23 ifl { tMPSU_Rmclenagth »= 0 && MPSU_RmcData == 37
24 {
E scale=29
= rmcReceived=true
27 t
28 elze
29 i
30 t
3 ifl { MPSIU_RmcLength »= 0 && MPSU_RmcData == 4 1)
a2 ! {
e i scale=30
34 rmcReceived=true
35 t

183

T T
36

39 ifl { MPE_Rmclength »= 0 && MPEU_PmcData == 5]
a0’ i

i scale=32

42 | rmcReceived=true

43 b

44 else

45 i

48 b

471 ift { MPSU_RmcLenath »= 0 8& MPSU_RmcData == 6})
48 {

a9 scale=34

50 rmcReceived=true

Bl r

52 else

B3 | {

54 b

55 ifl { MPSU_RmcLength >= 0 && MPSU_RmcData == 71)
6 | {

57 scale=36

53! rmcReceived=true

B9 t

G0 elze

&1 i

B2 | !

631 ifl { MPSU_Rmclength »= 0 && MPSU_RmcData == 8)
B4 i

B5 | scale=37

66 : rmcReceived=true

ifl { true == rmcPReceived 1)
i
note(scale, 3)
waitwhile! MPSU_BuzzTime)

-

<\
Constant

Variable

Type

7 Selectill constant]

06 Setup Constant
Declare variable of the scale to be played.
Select Data) Variable .

Select Type : Constant .
Set Constant Value : 0 .

variable Q7 Variable Name
Type

.
—— Declare the name of the scale variable to be

played.

Select Data) Variable .
Select Type : Variable .

%ﬁF

—
o Set Variable Name : scale .

Variable Name

scale

08 While Statement Exception

IR Receive
Length
- Exits if remote control button O is pressed loger

I !l = than set time,

Data

ﬁ L — E.3 [_ B“B Select Communication) IRReceive module,

Set Length : 1.000 . 1s button press,
Set Data : 0 . Power button press.

When the power button is pressed longer than 1s,
output of the module is True, False if less than 1s,

Crirotor 09 Setup ! operator
Operator Type | converts true / false value to opposite. Output
value of IRReceive module is converted to opposite
value and used as input value of the while
statement,

185

T

¥pe

2

Variable

[}
1 anstant hd

2

Al
L 2

Variable

Type

MNarme

rrcReceived

10 While Loop

Repeat depending on previous condition,

If True, continue to repeat next step.By going
through the | operator, repeat if the ouput value
of the IRReceive module is false, exit loop if true,
Exit loop if the power button is presed longer
than 1s.

1 1 Initialize Remote Control Input Variable,
Select variable showing that remote control input
was received,

Select Data) Variable module,

Select Type : Contant .

Select Constant Type: Bool: True or False data
type

Select Constant Value : False

12 Remote Control Input Initial Variable.

Select Data) Variable .

Select Type : Variable .

Variable Name : rmcReceived

rmcReceived is a variable showing that remote
control button 1~8 input was received within the
loop. Intitalized as False at beginning of the loop.
Play note if the checked value towards the end of
the loop is True,

IR Receive 13 Remote Control Button 1

Length

— Check if remote control button 1 was pressed.

o I O

2 Select Communication)IRReceive module
 ——————
Set Length : 0.000 .

e e <] 1]
o> Bl |‘[Set Data : 1. Refers to Button1.
€l Variabie [2 oy oy i -
rmcReceived

Switch 14 [F Conditional Statement
Run if True,
Variable 15 Save “Do” Note
Type
As explanined previously, Note Pitch (3 octaves)

number 25 referst to ‘Do’ note.
Change the Scale value to ‘Do’

Select Data)Variable module,

Select Type : Contant

Select Constant Type: int.

Set Constant Value : 25 . 25 refers to “Do”.

187

Variable

Variable
Type
2 Constant

—_— _
o~ -
; promilie=silior .
2 Constant = :| Variable =4
mcReceived
—_—nm—m

\ariable
Ture

2
4]

) [
d = K
ariable Mame

16 scale

Declare variable name of the scale to be playes
as Scale,

Select Data) Variable .
Select Type : Variable .
Set Variable Name : scale .

Receive previous constant value 25 using input
connecter .

17 Save Remote Control Input Confirm
Valule

If rmcRecieved value is True, it denotes one of the
remote control button (1~8) was pressed.

Select Data) Variable module,
Select Type : Contant .

Select Constant Type : Bool .
Select Constant Value : True .

18 Save Remote Control Input Confirm
Value

Select Data) Variable .
Select Type : Variable .
Set Variable Name : rmcReceived.

Receive previous connstant value True using input
connertor,

Variable

I 19 1-)“Do” Note

Program saves note ‘Do’ in the scale when reomote
control button 1 is pressed.

Variable

. 20 2->“Re” Note

Program saves note Re’ in the scale when reomote
control button 2 is pressed.,
Scade=No 27 is Re’ note.

Variable

21 3-)“Mi" Note

Program saves note ‘Mi’ in the scale when reomote
control button 3 is pressed.
Scale = No 29 is ‘Mi’ note.

189

Variable
Type

Variable

Variable
Tvoe
Constart

22 4-> “Fa’ note

Program saves note ‘Fa’ in the scale when reomote
control button 4 is pressed,
Scale =No 30 is ‘Fa’ note.

23 5-> “Sol” Note

Program saves note ‘Sol’ in the scale when reomote
control button 5 is pressed.
Scale =No 32 is ‘Sol note

24 6-) “Ra’ Note

Program saves note ‘Ra’ in the scale when reomote
control button 6 is pressed.
Scale =No 34 is ‘Ra’ note .

Variable

PRMMEN 25 7S’ Note

Program saves note ‘S’ in the scale when reomote
control button 7 is pressed.
Scale =No 36 is ‘Si' note.

Variable

26 8-> “Do” Note

Program saves note ‘Do’ in the scale when reomote
control button 8 is pressed.

R
o]
E— Scale=No 37is Do note .
|

Variable 27 Whe rmcReceived is True
Type
2 Constant
fym When rmcReceived is True, input saved scale

value where pitch value was previously saved
into note to ouput note,

=== 1

= v'a_é'ue }E'

rcReceived -

, =
{-l Constant = [El \Variable

mcreccved ‘ Select Data) Variable module.
Select Type : Contant .

Select Constant Type: Bool.
Select Constant Value : True.

ypoe
0l Wit
alue

O1rue Wrise

191

Variable 28 When rmcReceived is True

Type

rmcReceived variable name is identical.

Variable
rmcReceived

ONEC
“Wariable Mame

rmcReceived

29 Comparison Operator ==

Operator
Cparator Type
Select Data) Operator module
P Select Operator Type : Compare .
Select Compare Operator: — .

rmcReceived = = refers to true ,
shows “rmcReceived is equal to true .

30 Switch IF Conditional Statement
Run if True,

Switch

Variable

Type

Sound

Mode

Variable
Type
2 MPSURAM Dats v

r . A
A D zl . " 3 BuzzTime

MPSU RAM

5L RAM
o I ©

31 scale-) note
Input Scale value into Note,

Make variable scale module,

32 Sound Play
Input Scale value into note to play sound.

Select Motion) Sound module,
Set Note Length : 3. detnotes eighth note. Lasts
153.6ms .

Different scale values were saved depending on
the input from the remote control buttons. When
the scale value is recevied by Note Pitch
correspoding note will play.

33 BuzzTime

Buzz Time in MPSU RAM Data decides if the note
is playing and waits.

When buzzer starts to sound, BuzzTime acquires
certain value which decreases by 1 every 6.4ms,
If the value is other than O, buzzer is still sounding
and if the value is 0, buzzer has stopped. Refer
to ‘Raw Data’ in note length table for initial BuzZTime
values,

Select Data) Variable .

Select Type : MPSU RAM Data .
Select MPSU RAM : BuzzTime .

193

34 Wait

Wait untill Buzztime value becomes 0, In othe words,
wait untill the sound ends,

35 Note Output Process

When rmcReceived is True, value saved in scale is
used as input to Sound module which then outputs
corresponding note,

Buzzlime to checks the end of the note and goes
back to the begining.

36 Compile, Download, Run

Click ‘Compile’, Click ‘download’ on the right if
there is no compilation error, Download to robot.
Click ‘Run’ button (Arrow button) after the download..

37 Robot Motion

Press Remote control buttons(1~8) to play notes.
End task by pressing the power button for more
than 1s,

195

Appendix

B DRC Register & Protocol Hovis

Apendix

Register

Non—\olatile Register Map

Controller registers contain current status and opertational data of the controller and it is comprised of Non—\olatile
and Volatile registers. Reading or changing the register data using command protoclols eable the user to control the

controller and use the DR—Visual Logic to program the robot,

Non-Volatile Register (EEP Register) Map

Non—\olatile registers retain data even when the controller power has been turned off and contain basic values pertaing
to the controller operation. Values in the Non—\Volatile registers are copied to the volatile registers as soon as the control—
ler power is turned on. Any changes made to the Non—\Volatile registers will not afffect the opertaion of the robot untill the

changed values are copied to the Volatile registers after reboot or after power has been turned off and back on,

B Address
Address refers to the register address. In order to read/write to the register, packet must contain the relevant
register address,
m Default
Factor default values. Rollback command is used to the change the cotents of the Non—\olatile regsters back
to factory default values.
® Valid Range
Valid data range register can have, Error will occur when the data is being copied to the the Volatile register if the
input data exceeds valid rage and the data will be turncated to fit within the valid range of the volatile register.
® RW
RO(Read Only) refers to registers where data can only be read from but not written to. Error will occur if an at—
tempt is made to write to the RO registers. RO Registers contain such data as the controller model number,

firmware version, and sensor data. RW registers can be read from and written to.

% e(Reg_Name) : Refers to Reg_Name of Non—\olatile Register(EEP Register)

% r(Reg_Name) : Refers to Reg_Name of Volatile Register(RAM Register).

199

Addr

10

1

12
13
14
15

16

17

18

19

21

Type
Model Not
Model No2

Version1

Version2

Baud Rate
Special Function

Reserved

Ack Policy

Torque Off Policy

Alarm LED Policy

Status Check Policy

Min. Voltage
Max. Voltage
Max. Temperature

Remocon Channel

Servo Ack Wait Tick

Zigbee Ack Wait
Tick
LED Blink Period

ADC Fault Check
Period

Packet Garbage
Check Period

Bytes

1

1

N

Default

0x05
0x54
0x01

0x22
0x10

0x00

0x00

OxFD

0x01

0x03

Ox7F

0x01

Ox5F
0x88
OxDF

0x61
0x04

0x50

0xBB

0x0138

0x007D

Valid Range

Refer 08page

0x00~0xF3

0x00~0xFD

0x00~0x02

0x00~0x7F

0x00~0x7F

0x00~0x01

0x00~0OxFE
0x00~0OxFE
0x00~0OxFE
0x61~0x6A

0x00~0OxFE

0x00~0OxFE

0x00~0OxFE

0x0000 ~
Ox7FFF

0x0000
~OX7FFF

RW

RO
RO
RO

RO
RwW

RwW

RW

RW

RwW

RW

RW

RW
RW
RW

RwW

RW

RW

RW

RW

Comments

Controller mode No.

Firmware version

PC—Controller, Com speed be—
tween Controller—Servo

Flag for using DRC for special
function

Controller ID(OXFE: Can be used
as Broadcasting ID) ID cannot
be assigned)

Reply to packet according to
policy

Torque off according to policy

Alarm LED blink accordking to
policy

Decide whether to check value
of servo angle

Minimum voltage(Ox5F : 7.1V)
Maximum voltage(0x88 : 10.0V)
Max temperature(OxDF : 85 ° C)

IR remote control channel code

Minimum wait time for Servo Ack
(0x04 : 6.4ms)

Zigbee Ack wait time (0x50 :
128ms)

Warning LED blink peirod(0xBB
: 300ms)

Temperature/Voltage Error
Detection Period
(0x0138 : About 500ms)

Packet Corruption Detection
Period (0x7D : About 200ms)

Address 0—6 contains basic controller and communications data . Address 7—22 contains controller function data. Data

in address 7—22 are copied to \Volatile register when the controller is rebooted.

200 pE T

\olatile Register Map

Volatile Register(RAM Register MAP)

\olatile Register contains controller operation settings, controller status, and sensor data values, Data values contained in

the Volatile registers have direct influence on operation of the controller. Rebooting the controller initizalizes the data in the

\olatile register. Even if the register values were changed to change the controller settings, values in the Volatile registers

will revert back to the initial setting when the controller is rebooted.

Addr

17

22

23

24

25

26

28

30

32

33

34

35

Type
ID
Ack Policy
Torque Off Policy
Alarm LED Policy
Status Check Policy
Min. Voltage
Max. Voltage
Max. Temperature
Remocon Channel

Servo Ack Wait Tick
Zigbee Ack Wait Tick

LED Blink Period

ADC Fault Check Period
Packet Garbage Check Period

Status Error
Error Codes [0] ~ [4]
LED Control
User Timer Tick
Connected Program
Zigbee Channel
Zigbee PANID
Zigbee SADDR

Zigbee DSTADDR
Zigbee ACKREQ
Zigbee BACKOFF

Servo Count

Servo ID[0]~[32]

Bytes

1

1

33

Valid Range
0x00~0xFD
0x00~0x02
0x00~0x7F
0x00~0x7F
0x00~0x01
0x00~0xFE
0x00~0xFE
0x00~0xFE
0x61~0x6A

0x00~0xFE
0x00~0xFE
0x00~0xFE

0x0000~0x7FFF
0x0000~0x7FFF
0x00~0x7F

Refer to 52 page
0x00~0x07
0x00~0OxFF

0~3
11~26
0x0000~0xFFFF
0x0000~OxFFFF
0x0000~OxFFFF

0~2

0~2
0~32

0x00~0xFE

RW Comments

RW
RW
RW
RW
RW

RW

Data copied from non—volatile register
RW .
when controller is booted.

RW

RW

RW

RW

RW

RW

RW

RW Status error, Refer to 11 page
RW Most recent 5 error codes

LED value when running Task
(0x01:Red, 0x02:Green, 0x04: Blue)

RW
RW User configurable timer(100[ms]/tick)
RW Currently connected PC program
RW Zigbee communication channel

RW WPAN ID ZigbBee belongs to

RW Zigbee ID

RW Matching Zigbee ID

Decide whether to request ACK after

Y RF communication

Decide whether to apply Random

R0 delay after RF communication.

RO Number of connected motors

ID of each motor (OXFE means motor

e does not exist)

Iy 201

Addr
68
69
70
4l
72
73
74
75
76
77
78
79
80
81
83
85
86
88
920
92
94

96
98
99
100

101
103
104
105
106
170
234
235
236

237

202 pE

Type
Playing Motion
Playing Task
Charger Connected
Buzzer Scale
Buzzer Time
Button Status
Remocon Length
Remocon Data
Input Voltage Value
Temperature Value
Light Sensor Value
ADC Port 1 Sensor Type
ADC Port 2 Sensor Type
ADC Port 1 Sensor Value
ADC Port 2 Sensor Value
ACC/GYRO Connected
ACC X Value
ACC Y Value
ACC Z Value
GYRO X Value
GYRO Y Value

GYRO Z Value
Sound Detection Flag
Sound Direction
Reserved
Tick
DRT-HWW?1 Connected

DRC—004TO Connected

Reserved

Servo Status Error & Detail [0]~[31]

Servo Position[0]~[31]
DRT-HWWI Status Error
DRT-HWWI Status Detail
DRT—004TO Status Error

DRT—004TO Status Detail

Bytes
1

1

1
64
64

1

Valid Range
0x00~0x01
0,13
0~1
0x00~0x25
0~192
0x00~0x3F
0~240
0x00~0x1D,0xFE
0x00~0OxFE
0x00~0OxFE
0x00~0xFE
0~2
0~2
0x0000~0xFFFF
0x0000~OxFFFF
0~1
—4096~4095
—4096~4095
—4096~4095
—32768~32767
—32768~32767

—32768~32767
0~250

—2~2

0~60000

0x00~0x80 * 64
0x0000~0x7FFF
0x00~0x80
0x00~0x7F
0x00~0x80

0x00~0x7F

RW
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO

RO
RO

RO

RO
RO

RO

RO
RO
RO
RO
RO

RO

Comments
Check whether Motion running
Check whether Task running
Check whether charger connected
Buzzer ptich
Buzzer sound time(6.4[ms]/tick)
Button Status
Remote control button press ime(125[ms]/tick)
Remote control button number
Input Voltage Raw Data, 8bit
Current temperature Raw Data, 8bit
Light sensor value Raw Data, 8bit
Sensor type connected to ADC port 1
Sensor type connected to ADC port 2
Sensor output value connected to ADC port 1
Sensor output value connected to ADC port 2
Acc/Gyro sensor connection status
Acc sensor X axis Raw Data, 13bit
Acc sensor Y axis Raw Data, 13bit
Acc sensor Z axis Raw Data, 13bit
Gyro sensor X axis Raw Data, 16bit
Gyro sensor Y axis Raw Data, 16bit

Gyro sensor Z axis Raw Data, 16bit

Number of successive sound detections
(Cleared after 1s)

Direction of detected sound(— Left, + Right)

Touch status value of connected
buzzer module

System tick, 1.6[ms]/INT

DRT—HWWI connection status
DRC-004TO connection status
Reserved

Status value of connected motor
Position value of connected motor
Status Error of DRT-HWW1 connected motor

Detailed Status DRT—HWW1 connected motor

Status Error DRT—004TO connected motor

Detailed Status DRT—004TO connected motor

Detailed Register Description

Model No 1, Model No 2(EEP Register 0, 1 Address)

DRC model name expressed in 2 byte binary format.Cannot be changed by the user.

Version 1, Version 2(EEP Register 2, 3 Address)

DRC firmaware version, If not the latest version, download and update from the website. Can not be changed by the user

Baud Rate(EEP Register Address #4)
Datat value determining the UART communication speed between the PC & DRC and DRC & DRS. Communication speed

according to the data values are as follows, Communication speed will be set at default value of 115,200 bps if the data

value entered is not in the value list below,

Baud Rate Register Value

57,600 34
115,200 16
200,000 9
250,000 7
400,000 4
500,000 3
666,667 2

Special Function(EEP Register Address #5)
EEP Register Address #5 is used when DRC—005T is to be used for special function, Decision to use the special function

is set by writing 1 or O to each bit. Default value is 0x00 (No functions used). Functions corresponding to each bit is shown

below,

Bit Value Mode

0 0x01 Custom Sensor Mode

1 0x02 TTL Communication Mode
2 0x04 Reserved

3 0x08 Reserved

4 0x10 Reserved

5 0x20 Reserved

6 0x40 Reserved

7 0x80 Reserved

* Custom Sensor Mode: This mode is for using custom sensors with
DRC—-005T. DRC—005T has 4pin sensor ports on each side which can
normally be used with only limited type of sensors. However, by using
custom sensor mode, it is possible to connect other type of sensors to
these ports providing sensors use 5V input power. Ports on each side

can accept 1 analog and 1 digital sensor for total of 4 custom sensors (2

: Digital Input
digital and 2 analog). Analog sensor values r(ADC Port 1 Sensor Value) : Analog Input

and r(ADC Port 2 Sensor Value) are expressed in 10 bits (0~1023), digital : 5V

sensor values r(ADC Port 1 Sensor Type) and r(ADC Port 2 Sensor Type) : GND

are expressed by 0~1. Sensor port pin map is as shown in the photo.

* TTL Communication Mode: PC and DRC—005T uses RS—232C +5~10V communications level. However, it is
possible to control the DRC—005T like a PC using 3.3V TTL level instead of RS—232C level by setting the DRC-005T com—
munication mode to TTL communication mode. Zigbee connection pin is used to communicate with DRC—005T using TTL

level, Zigbee connection pin is as shown below,

ID(EEP Register Address #7, RAM Register Address #0)
DRC ID. Default value is 253(0xFD). if several DRCs are given distinct IDs, it is possible to connect them to the same

communications line and control them similar to controlling several DRSs. To prevent malfuction, each DRC connected to

the same communications line should have distinct ID.

ACK Policy(EEP Register Address #8, RAM Register Address #1)

Data value determines whether to send ACK Packet when Request Packet is from PC to DRC.

® 0 : Do not send reply to any Request Packet.

B 1: Send reply to only those Request Packets requesting reply such as Read Command and few others.
B 2 : Reply to all Request Packets.

% When STAT Request Packet is received, send reply regardless of ACK Policy.

% Do not reply to REMOCON Regardless of ACK Policy.

% Do not reply when pID is 254(0xFE, Broadcast pID) with an exception of STAT command.

% Refer to 22page for detailed explanation of response to individual ACK Packet ACK Policy.

Torque Off Policy(EEP Register Address #9, RAM Register Address #2)

Determines whether to release(off) the torque to the connected servo motors when error is detected,

| (r(Torque Off Policy) & r(Status Error)) is True, all connected servo motors will have the torque released(off). Servos with
torque off will not be able to move.

B r(Status Error) Error state has to be cancelled first to turn the motors back to Torque On state.

% & is a Bitwise AND operator.When peforming A & B operation, binary representation of A & B are compared and the
result is shown as 1 only if both A and B has 1 in the binary format, Exampe) 00101110 & 10110110 = 001001100

Alarm LED Policy(EEP Register Address #10, RAM Register Address #3)

Determines whether to blink warning LED when error detected.

B (r(Alarm LED Policy) & r(Status Error)) is True, TX, RX, Spare LED on controller will blink and the warning LED blinkd perid
is determined by the r(LED Blink Period).

B Original function of the TX, RX, Spare LED will be ignored while the LEDs are blinking error warning.

B r(Status Error) has to be cancelled first in order for TX, RX, Spare LED to return to their normal function,

Status Check Policy(EEP Register Address #11, RAM Register Address #4)

Determines whether controller should continuouisly read the current servo position, When r(Status Check Policy) is set at 1,
Controller will continuously read the current servo position and servo status and update the r(Servo Status Error & Status
Detail[0]~[31]) and r(Servo Position[0]~[31]). Controller will not perform the update if r(Status Check Policy) is set at 0.

Minimum Voltage(EEP Register Address #12, RAM Register Address #5)

Refers to minimum input voltage Raw Data, If the DRC input voltage r(input Voltage Value) is below r(Minimum Voltage),
0 bit “Exceed Input Voltage Limit” will be selected in the r(Status Error) and OxO1(Low Voltage) will be added to r(Error
Codes[0]~[4]).

B Default value is Ox5F(App 7.1V). Refer to to the conversion chart (page 48) to see the relationship to actual voltage.

Maximum Voltage(EEP Register Address #13, RAM Register Address #6)

Refers to maximum input voltage. If the DRC input voltage r(Input Voltage Value) is above r(Maximum Voltage), O bit
“Exceeded Input Voltage Limit” will be selected int the r(Status Error) and 0x02(High Voltage) will be added to r(Error
Codes[0]~[4]).

B Default value is 0x88(App 10.0V). Refer to to the conversion chart (page 48) to see the relationship to actual voltage.

e 205

Maximum Temperature(EEP Register Address #14, RAM Register Address #7)

Refers to maximum operating temperature Raw Data. If DRC temperature r(Temperature Value) exceeds r(Maximum Tem—
perature), 1 bit “Exceed Temperature Limit” will be selected in r(Status Error) and 0x03(Hight Temperature) will be added to
r(Error Codes[0]~[4]).

B Default value is OxDF(2F 85C). Refer to to the conversion chart (page 50) to see the relationship to actual temperature,

Remocon Channel(EEP Register Address #15, RAM Register Address #8)
Refers to remote control channel. Remote control has value range from Ox61 to Ox6A with 10 selectable channels. Actual

remote control channel must match the r(Remocon Channel) for remote control commands to be recognized,

Servo Ack Wait Tick(EEP Register Address #16, RAM Register Address #9)

Wait to receive Servo Ack after sending cut request to the servo connected to the DRC. No reply received judgment is
made if Servo Ack is not received by the DRC within the prescribed time based on the estimated size of the Servo Ack,
Servo Ack wait Tick refers to the wait time for the shortest Servo Ack (9 byte) with the wait time increasing as the length of

the Servo Ack increases. 1 tick is equal to 1.6ms and the default value is 0x04 (approximately 6.4ms).

Zigbee Ack Wait Tick (EEP Register Address #17, RAM Register Address #10)
Maximum waiting time for receiving reply packet (ACK Packet) from the Zugbee module connected to DRC. It the return
packet (ACK Packet) is not received within the maximum waiting time, it is assumed no reply will be received. ttick = 1.6ms,

Default value is 0x50(2F 128ms).

LED Blink Period(EEP Register Address #18, RAM Register Address #11)
Alarm LED blink rate when LED blinks according to the r(Alarm LED Policy) when error detected. LED will be on for r(LED
Blink Period) and off for r(LED Blink Period) with continous repetition, 1tick = 1.6ms., Default value is OxBB(Appx 300ms).

ADC Fault Check Period(EEP Register Address #19, RAM Register Address #12)

Input voltage and temerature check period. If input voltage and the temeratrure exceeds maximum limit for longer than
r(ADC Fault Check Period), it is assumed that error has occured. ttick= 1.6ms, Default value is 0x0138(500ms).

Packet Garbage Check Period(EEP Register Address #21, RAM Register Address #14)
Incomplete or garbage packet check period. If incomplete packet is received or if complete packet is not received within
r(Packet Garbage Check Period), incomplete packet will be deleted and #2 bit “Invaild Pacekt” will be selectd in r(Status

Error) . Depending on where the packet was coming from, Ox41(Zigbee module incomplete reply packet)or 0x51(Servo

incomplete reply packet), or 0x61(PC incomplete request packet) will be added to r(Error Codes[0]~[4]).

Status Error(RAM Register Address #16)
Shows the controller error states. Total of 7 bits are used to show different error state values. r(Alarm LED Policy) and r(Torque
Off Policy) also have the same error format as below. Alarm LED will start to blink if error state expressed by 1 bit in r(Alarm

LED Policy) occurs. Torque will be released on all connected servos if error state expresedd by 1 bit in r(Torque Off Policy)

occurs,
Bit Value Type
0 0x01 Exceed Input Voltage limit
1 0x02 Exceed Temperature limit
2 0x04 Invalid Packet
3 0x08 Servo Missing
4 0x10 EEP REG distorted
5) 0x20 Servo Status Error
6 0x40 Flash Data Distorted
7 0x80 Reserved

Error Codes[0]~[4](RAM Register Address #17)
Shows the detailed error codes when error occurs, Total of 5 bytes are used to save most recent 5 error codes. When er—
ror occurs, error code is saved in [0] and previous error codes saved in [0]~[3] are pushed back 1 byte to [1]~[4]. For

details, refer to error code list in (page 52).

LED Control(RAM Register Address #22)
Controls the LED whien running Task. Register can have values from 0x00~0x07, LED comes on when each bit is 1 and
goes off whe each bit is 0. Table below shows the LED controlled by each bit. LED control has no meaning when Task is

not running and the each bit is always 0.

Bit Value LED

0 0x01 TX(Red)

1 0x02 RX(Green)
2 0x04 Spare(Blue)

User Timer Tick(RAM Register Address #23)
Timer controlled by the user, if value other than 0 is used, number will decrease by 1 every 100ms, It is used to set the

delay time when running Task.

e 207

Connected Program(RAM Register Address #24)

Register shows the program currently connected and communicating with the PC.
B O : Not connected to the program

B 1: Connected to HerkuleX Manager

B 2: Connected to DR-SIM

B 3 : Connected to DR—Visual Logic

Zigbee channel (RAM Registor Address #25)
Holds frequency channel Zgbee module is currently using to communicate with, Selectable channels are from 11~16 with

15 being the default factory value. Register value is O if Zigbee module is not connected.

Zigbee PANID(RAM Register Address #26)
Register shows ID of the WPAN (Wireless Personal Area Networt) Zigbee module is currently connected to. Zigbee module will have
factory default value of OXBADA when first connected to DRC. Register value will be OXFFFF if Zighee moodule is not connected.

Zigbee SADDR(RAM Register Address #28)

Zigbee module has Short Address of 2 bytes and Long Address of 8 bytes. DRC uses the Short Address for communicating
and Short Address is also used to distinguish each individual Zigbee module connected to same WIPAN, Zigbee module will have
factory default value of OXBEAD when first connected to DRC. Register value will be OXFFFF if Zighee moodule is not connected.

Zigbee DSTADDR(RAM Register Address #30)

Refers to Short Address of the Zigbee module receiving the packet when packet is sent to another module on the same
WPAN., Zigbee module will have factory default value of OxBEAD when first connected to DRC. Register value will be
OXFFFF if Zigbee moodule is not connected.

% If packet is sent with register value of OxFFFF, sent pacekt will be broadcasted and every Zigbee module connected to

the same WPAN will receive the packet.

Zigbee ACKREQ(RAM Register Address #32)

Wireless commnunication maybe disrupted by another wireless equipment or an obstacle. When sending wireless signal
from Zigbee module to another module. requesting ACK packet from the receiving module will increase the reliability by
resending the packet if reply packet is not received. However, requesting ACK packet increases the communications time
so it is not recommended when packets are being sent at lesss than 100ms intervals. Receive reply packets when r(Zigbee
ACKREQ) is 1 and do not receive reply packets when r(Zigbee ACKREQ) is 0. Factory default value saved in Zigbee module

is 1. Register will have value of 2 if Zighee module is not connected.

Zigbee BACKOFF(RAM Register Address #33)

Wireless communication from Zigbee module to another module may not be possible while another equipment or Zigbee
module is using the same wireless frequency. Setting r(Zigbee BACKOFF) to 1 will make the module wait for random amount of
time before trying to establish commnication again. Similar to rZigbee ACKREQ), r(Zigbee BACKOFF) increases communication
reliability as well as the communication time. Module will retry communication without waiting if rZighee BACKOFF) is 0. Factory

default value saved in Zigbee module is 1. Register will have value of 2 if Zigbee module is not connected.

208 I

Servo Count(RAM Register Address #34)
Shows the total number of servo motors with distinct ID connected to the cotroller, Maximum of 32 servo motors can be
connected. If number of motors exceed 32, #5 bit “Servo Status Error” will be selected in r(Status Error) and 0x33 (Too

Many Serovs Connected) will be added to r(Error Codes[0]~[4]).

Servo ID[0]~[32](RAM Register Address #35)

33 byte space containing ID of the currently connected servo motors. Total of r(Servo Count) byte contains servo motor
ID from Servo ID[0] to ID[r(Servo Count)—1]. OxFE(Broadcasting ID) is saved in the extra space. Even though 32 is the
maximum number of servos allowed, 33 bytes are used to satisfy the rule of saving OxFE in Servo ID[r(Servo Count)] even

when r(Servo Count) is 32.

Playing Motion(RAM Register Address #68)

Flag showing whether the motion saved in the DRC is running. 1 = running, 0 = not running.

Playing Task(RAM Register Address #69)

Flag showing wether the task saved in the DRC is running. 1= running, 3= running in debug mode, 0 = not running.

Charger Connected(RAM Register Address #70)

Flag showing whether the battery charge is connected to the DRC by DC jack. 1= connected, 0 = not connected.

Buzzer Scale(RAM Register Address #71)
Shows the pitch of the note currently being played by the buzzer. 3 octaves of buzzer tones can be expressed in semi—tone

units, Maintains O value when buzzer is not playing. # in front of the pitch denotes octave.

Value Pitch Value Pitch Value Pitch Value Pitch
0 rest 10 3Ra 20 4Sol 30 5Fa
1 3Do 1 3Ra# 21 4Sol# 31 S5Fat#
2 3Ret# 12 3Si 22 4Ra 32 5Sol
3 3Re 13 4Do 23 4Rat# 33 5Sol#
4 3Re# 14 4Do# 24 4Si 34 5Ra
5 3Mi 15 4Re 25 5Do 35 5Ra#
6 3Fa 16 4Ret#t 26 5Do# 36 5Si
7 3Fatt 17 AMi 27 5Re 37 6Do
8 3Sol 18 4Fa 28 5Ret#

9 3Sol# 19 4Fat 29 5Mi

e 209

Buzzer Time(RAM Register Address #72)
Shows the remaining play time of the buzzer note being played. tick = 6.4ms. There are total of 10 different note lengths that
can be used to make buzzer melody or be used to play the note in the task. For example, to run 8 minute note, value of 24 is

written in the Buzzer Time and this value will decrease by 1 every 6.4ms untill it becomes 00. Buzzer will sound for 153.6ms.

Button Status(RAM Register Address #73)
Shows the state of 6 buttons. State of each button is expressed by 1 bit, pressed button is 1, released button is O, For

example, when OK button and Left button is pressed simulatneously r(Button Status) is 0x12.

Bit Value Button
0 0x01 Mode
1 0x02 OK
2 0x04 Up
3 0x08 Down
4 0x10 Left
5 0x20 Right

Remocon Length(RAM Register Address #74)
Shows the length of time remote control button is being pressed. Once the button signal is received, normal value of O
increases by 1 every 125ms . For example, r(Remocon Length) value of 3s button press is 24. Maximum r(Remocon Length)

value of 240 allows up to 30s button press to be recognized.

Remocon Data(RAM Register Address #75)

Key value of the pressed remoted control button. Each remote control button has distinct key value assigned. Key value is

254(0xFE) when there is no button signal.

Hovis remote control keymap is as shown in the picture to the left. IR Receive module data values correspond
to numbers in the left key.

For example, if the top left power button is pressed, Data O is received by the DRC. Robot can be programmed
to take certain action when ever the power button is pressed by setting the Data to O in the IR RECEIVE module
and connecting to Switch module input.

Bothe the Remote control channel and DRC channel is user selectable but selected channel in DRC must match
the remote controller channel in order for DRC to receive data from the remote control. Remote control channel
can be selected by pressing 1~~0 number + OK button simultaneously. DRC channel is selected by changing the
RmcChannel value in MPSU Ram Data, RmcChannel values corresponding to remote control numbers are as follows,

© @ ®
(ARG (ORORC:>)
@ ® o @ @
®® 6 o () @
DNONO, 1) (1) (o9

Remote Control Button RmcChannel Value

0+OK 97(0x61)

1+0K 98(0x62)

24+0K 99(0x63)

3+0K 100(0x64)

4+0K 101(0x65)

5+0K 102(0x66)

6+0K 103(0x67)

. 7+0K 104(0x68)

/ 4\ Vi 8+0K 105(0x69)

9+OK 106(0x6A)

Input Voltage Value(RAM Register Address #76)
Shows the ADC(Anlog—to—Digital Conversion) value of the input voltage in RAW DATA. Refer to the coversion chart in (page

48) to view the relationship to actual voltage value.,

Temperature Value(RAM Register Address #77)
Shows the ADC(Anlog—to—Digital Conversion) value of the current temperature in Raw Data, Refer to the conversion chart

in (page 50) to view the relationship to actual temperature.,

Light Sensor Value(RAM Register Address #78)
Shows the amount of light coming into the light sensor attached to the DRC.The larger the r(Light Sensor Value) value,

brighter the operating environment,

ADC Port 1 Sensor Type(RAM Register Address #79)
Shows the type of sensor attached to the ADC Port 1.

B O : No sensor attached.

B 1: Analog infrared distance sensor (PSD) attached.

B 2 : Digital distance sensor attached.

B 3: Shows that DRX—0001M is connected.

ADC Port 2 Sensor Type(RAM Register Address #80)
Shows the type of sensor attached to ADC Port 2.

B O : No sensor attached.

B 1: Analog infrared distance sensor (PSD) attached.

B 2 : Digital distance sensor attached.

B 3: Shows that DRX—0001M is connected.

ADC Port 1 Sensor Value(RAM Register Address #81)

Shows the value of the sensor attached to ADC Port 1.

B When r(ADC Port 1 Sensor Type) is 0 : 0, no sensor attached.

B When r(ADC Port 1 Sensor Type) is 1: Detected distance (cm unit) shown as value of 3~40.

B When fADC Port 1 Sensor Type) is 2 : Outout of the digital distance sensor snown as 0 or 1. 1if dbject is at distance of »10om, O if { 10cm.
® When r(ADC Port 1 Sensor Type) is 3 : 0 as it is not a sensor.

ADC Port 2 Sensor Value(RAM Register Address #83)

Shows the value of the sensor attached to ADC Port 2,

B When r(ADC Port 2 Sensor Type) is 0 : 0, no sensor attached.

B When r(ADC Port 2 Sensor Type) is 1 : Detected distance (cm unit) shown as value of 3~40,

B When rADC Port 1 Sensor Type) is 2 : Output of the digital distance sensor shown as 0 or 1. 1 f ooject s at distance of)10om, 0 if € 10cm.
B When r(ADC Port 2 Sensor Type) is 3 : 0 as it is not a sensor.

Acc/Gyro Connected(RAM Register Address #85)
Flag shows whether the Acc/Gyro sensor module is attached. 1 if attached. O if not attached.

212 pn

Acc X Value, Acc Y Value, Acc Z Value(RAM Register Address #86,88,90)
Acc sensor X, Y, Z axis value in Raw Data. Acc sensor measures the accleration being applied to the controller.
Direction of the acceleration sesor axis are shown below in the diagram. Each axis has value range from

—4096~4095, 265 is 1g(Grvitational accleration, 9.8m/s2). Use the following formula to convert Raw Data to g unit,

B Accleration(g) = (Raw Data) / 265

Gyro X Value, Gyro Y Value, Gyro Z Value(RAM Register Address #92,94,96)

Gyro sensor X, Y, Z axis value in Raw Data. Gyro sensor measures the rotational speed of the controller. Point the right
thumb towards the direction of the gyro sensor axis and fold the remaining figers into the palm to find the (+) direction of
the axis rotation. In other words, (+) direction of the rotation is conuter clockwise direction when looking down the axis.
Each axis of the Gyro senson has value range of —32768~32767. About 16.38 is 1°/s(1° rotation per 1s). Use the following

formula to convert Raw Data to °/s unit.

B Angle speed(’/s) = (Raw Data) / 32768 X 2000

Sound Detection Flag(RAM Register2| Address #98)
Shows the number of successive sounds detected by DRC. r(Sound Detection Flag) is incremented by 1 for when sound is
detected by DRC and then goes back to O if no more sound is detected in 1s. If another sound is detected in 1s, r(Sound

Detection Flag) is again incremented by 1, and then DRC waits for another sound detection for 1s.

Sound Direction(RAM Register Address #99)

Shows the direction of the most recent sound detected when r(Sound Detection Flag) is greater than or equal to 1.
B —2: Sound detected from 90" to the left,

B —1: Sound detected from 45°0]| to the left.

B 0 : Sound detected from the middle.

B 1: Sound detected from 45° to the right.

B 2 : Sound detected from 90° to the right.

Value is 0 when r(Sound Detection Flag) is O.

Tick(RAM Register Address #101)

Timer Tick is the basic standard for all DRC operation related to time. Starts from 0 and then goes back to O after reaching
60000.

Servo Position[0]~[31](RAM Register Address #170)
2*32 byte space containing the position of the the connected servos. Position value of the servo with r(Servo ID[n]) ID is
saved in the r(Servo Position[n]). Position value is updated continuously in real—time if r(Status Check Policy) is 1.Space

above r(Servo Count) is filled with Os,

Touch Status(RAM Register Address #100)
Shows the head touch status when head module DRT-HWW1 is connected. Value is 1 when head touch is detected and

0 otherwise. Value remains 0 when DRT-HWW1 is not connected.

Tick(RAM Register Address #101)

DRT-HWW1 Connected(RAM Register Address #103)
Shows DRT-HWW1 connection status. Value is 1 when DRT-HWW1 is connected and O when DET-HWW1 is not connected.

DRC-004TO Connected(RAM Register Address #104)
Shows DRC—004TO connection status. Value is 1 when DRC—004TO is connected and 0 when DET-HWW1 is not connected.

Servo Status Error & Detail[0]~[31](RAM Register Address #106)

2*32 byte storage containing status of currently connected servo motors, r(Status Error) and r(Status Detail) values in servo
motor RAM Register of the servo corresponding to r(Servo ID[n]) are saved in r(Servo Status Error & Detailln)). If r(Status
Check Policy) value is 1, r(Servo Status Error & Detailln]) values are updated continuously to show the current status of
connected servos, Space above the number of connected servos r(Servo Count) are filled with Os and if status cannot be
updated due to lack of communication with the connected servo, value of the 1st byte (Status Error) of (Servo Status Error

& Detailln]) changes to 0x80 to show communication error,

Servo Position[0]~[31](RAM Register Address #170)

2*32 byte storage containing position of currently connected servo motors. r(Calibrated Position) value in servo motor Ram
Register of the servo corresponding to r(Servo ID[n)) is saved in r(Servo Position[n)). If r(Status Check Policy) value is 1,
r(Servo Position[n]) value is updated continuously to show the current position value of the connected servo. if r(Status

Check Policy) value is 1. Space above the number of connected servos r(Servo Count) are filled with Os,

DRT-HWW1 Status Error(RAM Register Address #234)

Storage containing r(Status Error) value of DRT-HWWA1, If r(Status Check Policy) value is 1, value is updated continuously to
show error status of the connected DRT-HWW1. If (DRT—HWW1 Connected) value is O (DRT-HWW1 disconnected), register
value continues to remain as 0 and if status cannot be updated due to lack of ¢ ommunication, value changes to 0x80 to

show communication error,

DRT-HWW]1 Status Detail(RAM Register2| Address #235)
Storage containing r(Status Detail) value of DRT-HWW1, If r(Status Check Policy) value is 1, value is updated continuously
to show detailed status of the connected DRT—HWW1. If (DRT—HWW1 Connected) value is O (DRT-HWW1 disconnected),

register value continues to remain as 0.

DRC-004TO Status Error(RAM Register Address #236)

Storage containing r(Status Error) value of DRC—004TO, If r(Status Check Policy) value is 1, value is updated continuously
to show error status of the connected DRC—-004TO. If (DRC—004TO Connected) value is 0 (DRC-HWW1 disconnected),
register value continues to remain as 0 and if status cannot be updated due to lack of communication, value changes to

0x80 to show communication error

DRC-004TO Status Detail(RAM Register Address #237)

Storage containing r(Status Detail) value of DRC—004TO. If r(Status Check Policy) value is 1, value is updated continuously
to show detailed status of the connected DRC—004TO. If {(DRC—HWW1 Connected) value is 0 (DRC—004TO disconnected),

register value continues to remain as 0.

W DRC Register & Protocol Hovis

)
8l Protocol

Protocol Format

Overview
Packet controlling the DRC is divided into ‘Request packet’ used when communicating from PC to DRC and reply packet
‘Ack Packet’ from DRC to PC.

Setup

Commuications settings are as follows.

Baud Rate : 57,600 / 115,200 / 0.2M / 0.25M / 0.4M / 0.5M / 0.667M
Data Bit : 8

Stop Bit : 1

Parity : None

Flow Control : None

% Communication speed of the Com port attached to the PC or USB to Serial Cable maybe limited by the hardware or the

driver. Check the Baud Rate if there is problem in communication. Default DRC factory value is 115,200bps.

Packet Structure
: Check Check Optional
ltem Header Packet Size o][D) Sumi Sum2 Data
value OxFF OxFF 7~223 0~0xFE Refer to details Refer to details Refer to details Refer to details
bytes 1 1 1 1 1 1 1 MAX 216

1. Header(2 Byte)
Beginning of the packet. Composed of 2 bytes OxFF & OxFF.

2. Packet Size(1Byte)
Total byte size of the packet from Header to the Optional Data. Maximum Packet Size is 223. Packet Size exceeding 223

bytes will cause error.,

3. pID(1Byte)
ID of the DRC to be controlled. Care is required When pID is 254(0xFE), as all DRC rceiving the packet becomes control
target. pID larger than 254 will cause error.

% To distinguis from register r(ID), ID within the packet will be shows as pID.

216 P

4. CMD(1Byte)

In the request packet, CMD refers to command to be peformed by DRC. In the reply packet, CMD refers to the command
received by the DRC.There are total of 14 commands in the request packet and 13 in the reply packet. To distinguish the
reply packet CMD from the CMD in the request packet, Ox40 Bitwise OR operation is performed on the request packet CMD,
For example, 0x51 is the reply packet CMD to the request packet EEP_WRITE(Ox11) CMD. Refer to the Command Set in page
20 for complete CMD list and page 22 to view detailed description of each CMD.

There are also 9 types of request packets that can be relayed to the servos connected to the DRC. DRC will check the
request packets before relaying them to the servo motors and once reply is received from the servos, it will be relayed to

the PC. Refer to the servo manual for more information on servo request and reply packets.

5. Check Sum1, Check Sum2(2 Byte)
Check Sumi, 2 is a 2 byte space used to check integrity of the transmitted data. When there is n byte of Optional Data,

Check Sum is calculated as follows.

Check Sum1 = (Packet Size ” pID * CMD ” Data[0] * - " Data[n—1]) & OxFE
Check Sum?2 = (~(Packet Size * pID » CMD " Data[0] ” -+ Data[n—1])) & OXFE

% ~ is a Bitwise NOT operator, when ~A is performed, all bits in A are negated.. Example) ~(01101101)becomes 10010010.
% " is a Biwise AND operator, when A B is performed, each bit of A and B are compared and only the same bits become 1.
Exampe) 00101110 * 10110110 becomes 01100111,

6. Optional Data(0~216Byte)

Optional data that changes according to the CMD type. Refer to the detailed command description in page 22 for more

information on Optional Data.,

e 217

Command Set

List of commands that go in the CMD section of the protocol. There are 14 types of CMDs in the (Request Packet) and
13 types of CMDs in the reply packet (ACK Packet). When Request Packet is sent from the PC to DRC, DRC will perform
the task requested in the received packet and send the result or status back to the PC in the form of ACK Packet, Refer

to the pag 22 to view more detailed information on Request Packet & ACK packet forms and formats,

1. Request Packet(PC to DRC)

S o |
Ox11 Change Length number of values in EEP Register Address

0x12 Request Length number of values fromEEP Register Address

0x13 Change Length number of values from RAM Register Address

0x14 Request Length number of values from RAM Register Address Length

Ox15 Scan to check the the ID of servos connected to the controller

0x16 Run saved Motion

0x17 Run saved Task

0x18 Run saved head LED & Buzzer

0x19 Request controller error status and most recent error code

Rest all variables to factory default value
ROLLBACK e Rest values will be applied after power is turned off and back on.

REBOOT 0x1B Request reboot
m oxiC Send control command related to Zigbee connected to the controller
REMOCON 0Ox1D Send Remote Control Data

SERVO_FW_

UPDATE Ox1E Enter Servo F/W update mode

2. ACK Packet (DRC to PC)

Retun r(Status Error) & r(Status Error Codes[0])
227 vl Reply when r(Ack Policy) is All

Return Len number of values from EEP Register Address

EEP_READ S r(Ack Policy) is Read Only, Reply when All

Rturn r(Status Error) & r(Status Error Codes[0])

RAM_WRITE 0x53 Reply when r(Ack Policy) is All

Return Len number of values from RAM Register Address

RAM_READ et r(Ack Policy) is Read Only, Reply when All

Return servo IDs found by scan

CON_CHECK L r(Ack Policy) is Read Only, Reply when All

Return r(Status Error) & r(Status Error Codes[0])

PLAY_MOTION 0x56 Reply when r(Ack Policy) is All

Reply and reply format depends on Instruction

PLAY_TASK 0x57 (Refer to 34page)

Return r(Status Error) & r(Status Error Codes[0])

PLAY_BUZZ 60 Reply when r(Ack Policy) is All

Return r(Status Error) & r(Status Error Codes[0])

STAT 0x59 Always reply regardless of r(Ack Policy)

Return r(Status Error) & r(Status Error Codes[0])

ROLLBACK e Reply when r(Ack Policy) is All

Return r(Status Error)2} r(Status Error Codes[0])

REBOOT iz Reply when r(Ack Policy) is All

Reply and reply format depends on Instruction
ZIGBEE 0x5C (Reter 10/43page)
REMOCON = No reply packet.

Return r(Status Error) & r(Status Error Codes[0])
Reply when r(Ack Policy) is All

SERVO_FW_

UPDATE Ox5E

I 219

Detailed Command Description — EEP_WRITE

1-1. EEP_WRITE — Request Packet(0x11)

Packet

EEP
Data[Length—1]

Value 7+2+Length 0~0xFE 0x11 Address Length EEP Data[0]

Change Length number or values from EEP Register Address. Optional Data contains Address, Length, and Length number
of data. Optional Datal length is (2+Length) byte, Total Packet size is standard 7oyte + (2+L_ength)oyte = (9+Length) byte,
When DRC receives this particular packet, Values in Non—\olatile register address from Address to (Address+Length—1)
are changed from EEP Data[0] to EEP Data[Length—1].

¥ Any changes made to the Non—\olatile memory does not have direct affect on the operation of the DRC. Values changed
by the EEP_WRITE will be copied to the Volatile register when the DRC is rebooted by the REBOOT CMD or when the power
is turned off and back on,

Example
B Reqguest Packet to change the e(Alarm LED Policy) of the DRC with r(ID)253 to 0x3

ltem Header ngz';e‘ oD | cMD | cCS1 cSs2 | Datal0] | Data[1] | Datal2]

OxFF OxFF 0x0A(10) OxFD Ox11 0xD2 0x2C Ox0A 0x01 Ox3F

% CS1, CS2 is abbreviation of Check Sum1 & Check Sum?2,
e(Alarm LED Policy) address is 10 and the data length is 1. EEP Data[0] is Ox3F. Packet Size is (9+Length)=10. Check Sumf

& Check Sum2 are calculated according to the formaula in page 19.

Detailed Command Description — EEP_READ

1-2. EEP_WRITE — Ack Packet(0x51)

Format

Packet
Size

pID CMD Data[0] Datal[1]

7+2 r(ID) 0x51 r(Status Error) r(Error Codes[0])

Send reply packet with r(Status Error) & r(Error Codes[0]) values included. With Optional Data length fixed at 2 bytes, total

ltem

Packet size is fixed at 9 bytes. pID contins the r(ID) of the replying DRC, CMD becomes 0x51 by applying 0x40 Bitwise OR
operation to the Request Packet CMD Ox11.

Reply Condition
EEP_WRITE reply is sent only when r{ACK Policy) is 2(Reply to all packets). Exception to this rule is when pID of the request
packet is 254(Broadcasting ID), in which case reply is not sent even if r(ACK Policy) is 2.

Example
B Reply Packet after receiving request packet to change the e(Alarm LED Policy) of the DRC with r(ID)253 to 0x3

Packet
EIE NN N N N T)

\VZIIEW OxFF OxFF 0x09(9 OxFD 0x51 OxA4 Ox5A 0x00 0x00

Send current status and most recent error code.Both are 0x00 as there is no error.

2—1. EEP_READ - Request Packet(0x12)

Format

Packet

Value 0~OxFE 0x12 Address Length

Read Length number of values from EEP Register Address . Optional Data contains Address, Length, and Length number
of data, Optional Datal length is (2+Length) byte. Total Packet size is standard 7bytes + (2+Length)oyte = (H+Length) byte,
When DRC receives this packet, values from Non—\olatile register address from Address to (Address+Length—1) are sent

by the reply packet.

Example

B Request packet to read e(Min Voltage), e(Max Voltage), e(Max Temperature) values from DRC with r(ID) 253

Packet
EIE NN N N N T)

A\VZIIEW OxFF OxFF 0x09(9 OxFD 0x12 OxE8 0x16 0x0C 0x03

e(Min \Voltage) address is 12, length is 3. Packet Size is 9.

Check Sum1 & Check Sum2 are calculated according to the formaula in page 19.

2—2. EEP_READ — ACK Packet(0x52)

Format

Value 7+2+Length+2 r(ID) 0x52 Address Length

mm- Data[Length+1] | Data[Length+2] | Data[Length+3]

EEP
Data[Length—1]

A\VZ|{-8 EEP Data[0] r(Status Error) r(Error Codes[0])

Values in the Non—\Volatile register address from Address to (Address+Length—1) are sent contained in EEP Data[Olto EEP
Data[Length—1]. r(Status Error) & r(Error Codes[0]) values are sent as well, Address, Length, Length number of values,
and r(Status Error) & r{Error Codes[0]) are contained in the Optional Data. Optional Data length is (2+Length+2) bytes. Total
packet size is standard 7 bytes + (4-+H_ength) = (11+Length) bytes. pID contins the r(ID) of the replying DRC, CMD becomes
0x52 by applying 0x40 Bitwise OR operation to the Request Packet CMD 0x12,

Reply Condition
EEP_READ reply is sent when r(ACK Policy) is 1(Reply to only Read command), 2(Reply to all packets).Exception to this

rule is when pID of the request packet is 254(Broadcasting ID), in which case reply is not sent.

Example
B Reply to Request packet to read e(Min Voltage), e(Max Voltage), e(Max Temperature) values from DRC with r(ID) 253

e [0 o | o | owin o

\ZIICW OxFF OxFF OxOE(14) OxFD 0x52 O0xA6 0x58 0x0C 0x03

e o | owia o | ot

Value Ox5F 0x88 OxDF 0x00 0x00

Send 3 bytes of data from Address 12 contained in Data[2]~Data[4]. e(Min Voltage) in Data[2], e(Max Voltage)in Data[3] ,

e(Max Temperature) in Data[4]. Send current status and the most recent error code contained in Data[5] and Data[6]. When

there is no error, both Data[5] and [6] contain 0xQ0.

Detailed Command Description — RAM_WRITE

3—-1. RAM_WRITE — Request Packet(0x13)

Format
ize
RAM RAM
Value 7+2+Length 0~OxFE 0ox13 Address Length Datal0] Data[Length—1]

Change Length number or values from RAM Register Address. Optional Data contains Address, Length, and Length num—
ber of data. Optional Datal length is (2+Length) byte. Total Packet size is standard 7byte + (2+Length)byte = (HLength)
byte. When DRC receives this particular packet, Values in Volatile register address from Address to (Address+.ength—1)
are changed from RAM Data[0] to RAM Data[Length—1].

Example
B Request Packet to change the r(Status Error) & r(Error Codes[0]~[4]) of the DRC with r(ID)253 to 0x00

Packet
e |7 | 00 | e | o | owin | ol

\ZIIN OxFF OxFF OxOF(15) OxFD 0x13 OxF6 0x08 0x10 0x06

o v | o | vt | |t | v

Value 0x00 0x00 0x00 0x00 0x00 0x00

r(Status Error) address is 16, As 6 bytes of data after the address has to be changed. Address is 16, Length is 6, and RAM
Data[0]~RAM Data[5] is 0x00. Total Packet Size is (HLength)= 15. Check Sum1 & Check Sum?2 are calculated according

to the formaula in page 19.

% Both r(Status Error) & r(Error Codes[0]~[4]) are R/W registers but because registers contain current MPSU status, values
cannot be changed arbitrarily .The choice of values for these 6 byte registers are to use current values or to change them

all to Ox00. If any other values are used “Invalid Packet”(#2 bit) will be selected in r(Status Error) and 0x73(r(Status Error)

and “ Invalid write command” will be added to r(Error Codes[0]~[4]).

3-2. RAM_WRITE — ACK Packet(0x53)

Format

Packet

r(Error
Codes[O])

Value 0ox14 r(Status Error)

Send reply packet with r(Status Error) & r(Error Codes[0]) values included. With Optional Data length fixed at 2 bytes, total
Packet size is fixed at 9 bytes. pID contins the r(ID) of the replying DRC, CMD becomes 0x53 by applying 0x40 Bitwise OR
operation to the Request Packet CMD 0x13,

Reply Condition
RAM_WRITE reply is sent only when r(ACK Policy) is 2(Reply to all packets). Exception to this rule is when pID of the request
packet is 254(Broadcasting ID), in which case reply is not sent even if r(ACK Policy) is 2.

Example
B Reply to Request Packet to change the r(Status Error) & r(Error Codes[O]) of the DRC with r(ID)253 to 0x00

Packet
mn--- i | it

A\VZIIEW OxFF OxFF 0x09(9 OxFD 0x53 0x58 0x00 0x00

Send current status and most recent error code.Both are 0x00 as there is no error.

Detailed Command Description — RAM_READ

4-1. RAM_READ - Request Packet(0x14)

Format

Pgicz';et) CMD Data[0] Data[1]

7+2 0~0OxFE Ox14 Address Length

Read Length number of values from RAM Register Address . Optional Data contains Address, Length, and Length number

ltem

of data. Optional Datal length is (2+Length) byte. Total Packet size is standard 7bytes + (2+Length)oyte = (HLength) byte.
When DRC receives this packet, values from \Volatile register address from Address to (Address+Length—1) are sent by the

reply packet.

Example

B Request packet to read e(Min Voltage), e(Max Voltage), e(Max Temperature) values from DRC with r(ID) 253

Packet
e |0 | oo on | e o [owit

OxFF OxFF 0x09(9) OxFD ox14 OxE6 0x18 0x05 0x03

R(Min Voltage) address is 5, length is 3. Packet Size is 9.

Check Sum1 & Check Sum?2 are calculated according to the formaula in page 00.

4—-2, RAM_READ — ACK Packet(0x54)

Format

Value 7+2+Length+2 r(ID) 0x54 Address Length

“m- Data[Length+1] Data[Length+2] Data[Length+3]

RAM
Data[Length—1]

Value RAM Data[0] r(Status Error) r(Error Codes[0])

Values in the Volatile register address from Address to (Address+.ength—1) are sent contained in RAM Data[Olto RAM
Data[Length—1]. r(Status Error) & r{Error Codes[0]) values are sent as well. Address, Length, Length number of values,
and r(Status Error) & r(Error Codes[0]) are contained in the Optional Data, Optional Data length is (2+Length+2) bytes. Total
packet size is standard 7 bytes + (4+Length) = (11+Length) bytes. pID contins the r(ID) of the replying DRC, CMD becomes
O0x54 by applying 0x40 Bitwise OR operation to the Request Packet CMD Ox14.

RAM_READ reply is sent when r(ACK Policy) is 1(Reply to only Read command), 2(Reply to all packets).Exception to this

rule is when pID of the request packet is 254(Broadcasting ID), in which case reply is not sent,

Example
B Reply to Request packet to read r(Min Voltage), r(Max Voltage), r(Max Temperature) values from DRC with r(ID) 253

Packet
e B e e L

A\VZ|[I:8 OxFF OxFF 0x09(9 OxFD 0x54 O0xA8 0x56 0x05 0x03

e e | e

Value Ox5F 0x88 OxDF 0x00 0x00

Send 3 bytes of data from Address 5 contained in Data[2]~Data[4]. r(Min Voltage) in Data[2], r(Max Voltage)in Data[3] ,
r(Max Temperature) in Data[4]. Send current status and the most recent error code contained in Data[5] and Data[6]. When

there is no error, both Data[5] and [6] cotnain 0x00.

. 227

Detailed Command Description — CON_CHECK

5—-1, CON_CHECK — Request Packet(0x15)

Format

Value 7+1+Length O~OxFE 0x15 Length ID[O] D[Length—1]

Checks to see if servos with ID of ID[O]~ID[Length—1] are connected to the DRC. Optional Data contains Length, Length
number of ID. Optional Data length is (1+Length) bytes. Total Packet size is standard 7bytes + (1+Length)byte = (8+Length)
byte. When DRC receives this packet, It initiates communication with the serovs with ID[0] to ID[Length—1]. Total number of

sucessfully contacted servos and their IDs are sent back by the ACK packet.
% When Length is O, all IDs from 0~253 are scanned.

Example
B Request packet to check if servos with ID 0, 1, 2, 3, 4 are connected to DRC with r(ID) 253

Packet
= e 5 [0 [o0 | o | e o

\VZIIEW OxFF OxFF 0x0D(13) OxFD 0x15 OxE4 Ox1A 0x05

BRI e)

Value 0x00 0x01 0x02 0x03 0x04

There are 5 servos, therefor Length is 5. ID of the servos 0, 1, 2, 3, 4 are in Data[1] to Data[5]..Packet Size (8+Length) =

13. Check Sum1 & Check Sum? are calculated according to the formaula in page 19.

5—2. CON_CHECK — ACK Packet(0x55)

Format

Value 7+1+Length+2 r(ID) 0x55 Length

Item Datal1] Data[Length] Data[Length+1] Data[Length+2]

After performing ID scan, number of sucessfully scanned servos are entered in Length, ID values entered in ID[0] to

ID[Length—1] r(Status Error) r(Error Codes[0])

ID[Length—1] and sent back using reply packet together with r(Status Error) & r(Error Codes[0]) values. Address, Length,
Length number of values, and r(Status Error) & r(Error Codes[0]) are contained in the Optional Data. Optional Data length
is (H+Length+2) bytes. Total packet size is standard 7 bytes + (3+Length) = (10+Length) bytes. pID contins the r(ID) of the
replying DRC, CMD becomes 0x55 by applying 0x40 Bitwise OR operation to the Request Packet CMD 0x15,

Reply Condition
CON_CHECK reply is sent when r(ACK Policy) is 1(Reply to only Read command), 2(Reply to all packets).Exception to this

rule is when pID of the request packet is 254(Broadcasting ID), in which case reply is not sent.

Example
B Request packet to check if servos with ID 0, 1, 2, 3, 4 are connected to DRC with r(ID) 253. Reply packet whenscan

result shows only ID 0,1,2 are connected.

Packet
| oo % [0 | om | o0 | s | ow

A\VZIIEW OxFF OxFF 0x0D(13) OxFD 0x55 OxA4 Ox5A 0x03

BN)

Value 0x00 0x01 0x02 0x00 0x00

ID scan result shows only ID 0, 1, 2 are connected. Data[0] showing Length is 3 and IDs are entered sequentially in
Data[1]~Data[3]. Send current status and the most recent error code contained in Data[4] and Data[5]. When there is no
error, both Data[4] and [5] cotnain 0x00. Packet Size (10+Length)=13

I 229

Detailed Command Description — PLAY_MOTION

6—1. PLAY_MOTION — Request Packet(0x16)

Fromat

Value 0~0xFE 0x16 Motion No. Motion Ready Flag

When DR-SIM is used to save motion in DRC, saved motion receives a number between 0O to 127. PLAY_MOTION packet
runs the saved motion in DRC, Motion No. refers to the saved motion number, Motion Ready Flag decides whether to take
motion ready posture. When packet is sent with Motion Ready Flag set to 1, first frame of the motion will be played slowly.
Damage to the motor or fall due to sudden movent can be prevented by sening a packet with Motion Ready Flag set to 1

and then another packet with Flag set to O little later. Also, current motion will stop if packet is sent with motion No. 254(0xFE).

See below for arrangement of the motion with Motion No. & Motion Ready Flag

0~127 Run Motion
0~127 1 Run first frame of the motion
254 0~1 Stop Motion

Example
B Request packet to run Motion No 1in DRC with r(ID) 253

Packet
= | eme [0 o | o0 | s | o | ot o1

\V-\IY OxFF OxFF 0x09(9) O0xFD 0x16 OxE2 0ox1C 0x01 0x00 0x00

As motion being run is No.1, Motion No. is set to 1, Motion Ready Flag set to 0.

B Request packet to run first frame of Motion No 2 in DRC with r(ID) 253

Item Header Pgicz';e‘ pID CMD cst CS2 Data[0] | Data[1]
OxFF OxFF 0x09(9) OxFD 0x16 OxEO Ox1E 0x02 0x01

As motion being run is No.2, Motion No. is set to 2, Motion Ready Flag set to 1.

230

6—2. PLAY_MOTION — ACK Packet(0x56)

Format

Value 0x56 r(Status Error) r(Error Codes[0])

Send reply packet with r(Status Error) & r(Error Codes[0]) values included. With Optional Data length fixed at 2 bytes, total
Packet size is fixed at 9 bytes. pID contins the r(ID) of the replying DRC, CMD becomes 0x56 by applying 0x40 Bitwise OR
operation to the Request Packet CMD Ox16.

Reply Condition
PLAY_MOTION reply is sent when r(ACK Policy) is 2(Reply to all packets).Exception to this rule is when pID of the request

packet is 254(Broadcasting ID), in which case reply is not sent.

Example
B Reply to request packet to run Motion No 2 in DRC with r(ID) 253

Packet
e LB e e

OxFF OxFF 0x09(9 OxFD 0x56 0x5C 0x00 0x00

Send current status and most recent error code.Both are 0x00 as there is no error.

Detailed Command Description — PLAY_TASK

7-1. PLAY_TASK — Request Packet(0x17)

Format

Value 0~0xFE ox17 Instruction

Use DR—Visual Logic to run the Task saved in DRC. Depending oh the instruction, PLAY_TASK is divided into 4 commands
which perfom different function according to the Instruction.

B When Instruction is O, runs the Task in normal mode.,

B When Instruction is 1, runs Task in debugging mode.

B \When Instruction is 2, rusn the fisrt stop of the Task and stops. This Instruction has meaning only when in debugging mode.

B When Instruction is 254, stops Task. Task stops regardless of whether it's in normal or debugging mode.

Example
B Request packet to run Task saved in DRC with r(ID) 253

Packet
= e |75 [0 [o0 | o | oo o

\ZIICN OxFF OxFF 0x08(8) OxFD 0x17 OxE2 0x1C 0x00

Task run, Instruction is O.

B Reguest packet to run Task saved in DRC with r(ID) 253 in debugging mode

Packet
N RN

\ZIICN OxFF OxFF 0x08(8 OxFD 0x17 OxE2 0x1C 0x01

Instruction is 1 as Task is running in debugging mode.

B Packet running one step of the Task when DRC with r(ID) 253 is in debugging mode.

Packet
e |72 | o [a0 | o | s | own

\VZIIM OxFF OxFF 0x08(8) OxFD 0x17 OxEO Ox1E 0x02

Instruction is 2 as Task runs for single step in debugging mode.

232 pnE

7—2. PLAY_TASK — ACK Packet(0x57)

Format — Debuggin ACK Packet

Program
Counter L

Value r(ID) 0x57 Program Counter H r(Status Error) r(Error Codes[0])

Format — Status ACK Packet

ERCT I T

Value r(ID) 0x57 r(Status Error) r(Error Codes[0])

Depending on the Instruction, PLAY_TASK replay packet is divided into two types.

Debugging reply packet shows which section of the task is running in 2 bytes by using Progam Counter L and Program
counter H. This information is used to find out which code is currently running when debugging Task in DR—Visual Logic.
Debuggin reply packet also includes r(Status Error) & r(Error Codes[0]) values. As Optional Data length is fixed at 4 bytes,
total packet size is 11 bytes. pID contins the r(ID) of the replying DRC, CMD becomes 0x57 by applying 0x40 Bitwise OR
operation to the Request Packet CMD 0Ox17.

Status reply packet includes r(Status Error) & r(Error Codes[0]) values. As Optional Data length is fixed at 2 bytes, total
packet size is fixed at 9 bytes. Debugging reply packet is used in circumstances related to debugging and status reply
packet in other circumstances. Refer to below to view the type of reply packet being sent depnding on the Instruction &

circumstances.

oo | s | |

0 Status Status
1 Debugging Status
2 Debugging Status
254 Status Status

Instruction O (Task Running) and Instruction 254 (Task stop) are replied with status reply packet. Debuggin related instructions
such as Instruction 1 (Run Task in debuggin mode) and Instruction 2 (Run one step) are replied with debugging reply
packet. However, under the circustances when requested command cannot be performed as when Instruction 1 is sent

while the Task is running or Instruction 2 is sent when Task is not running, reply will be with status reply packet.

. 233

Reply Condition

Status reply packet is sent when rACK Policy) is 2(Reply to all packets).Exception to this rule is when pID of the request
packet is 254(Broadcasting ID), in which case reply is not sent.

Debuggin reply packet is sent when r(ACK Policy) is 1(Reply to only Read command), 2(Reply to all packets).Exception to

this rule is when pID of the request packet is 254(Broadcasting D), in which case reply is not sent,

Example
B Reply 1o request packet to run Task saved in DRC with r(ID) 253

Packet
S N N N RN 2 T

\ZIIEN OxFF OxFF 0x09(9) OxFD 0x57 0x5C 0x00 0x00

As request packet Instruction is 0, reply with current status and most recent error code. There is no error. both Data [0] &

[1] wil have 0x00 values.

B Reply to request packet to run Task saved in DRC with r(ID) 253 in debugging mode.

Packet
L3 5 N T N) T e

\VZIEY OxFF OxFF 0x0B(11) OxFD 0x57 0x54 0x0B 0x00 0x00 0x00

As request packet instruction is 1, reply with degugging reply packet. Current program counter location is saved in Data[0]
& Data[1]. Current location after starting debugging process is 0x000B. Current status and recent error code is saved in
Data[?] & Data[3].

B Reguest to run one step of Task when DRC with r(ID) 253 is in debuggin mode.

Packet
e |72 | o o | co | oo) ot ot

\VZIIEW OxFF OxFF 0x0B(11) OxFD 0x57 0x86 0x78 0x26 0x00 0x00 0x00

As request packet instruction is 2, reply with degugging reply packet. Current program counter location saved in Data[0] &

Data[1] is showing 0x0026. Current status and recent error code is saved in Data[2] & Data[3].

Detailed Command Description — PLAY_BUZZ

8—1. PLAY_BUZZ — Request Packet(0x18)

Format

Value 0~0OxFE 0x18 Reserved Buzz No.

Run Buzzer saved in DRC. Buzzer can have number between 1 to 63, Send request packet with Buzzer number in Data[1]

Buzz No. Enter O in Data[0] as this space is Reserved for other data.

Example
B Request packet to run Buzzer No. 5 in DRC with r(ID) 253,

Packet
DN NN ETET

\ZIICN OxFF OxFF 0x09(9 OxFD 0x18 OxE8 0x16 0x00 0x05

Running Buzzer No. 5, Data[1] is 5.
8—2. PLAY_BUZZ — ACK Packet(0x58)

Format

r(Status
Value r(ID) 0x58 Error)

r(Error Codes[0])

Send reply packet with r(Status Error) & r(Error Codes[0]) values included. With Optional Data length fixed at 2 bytes, total
Packet size is fixed at 9 bytes. pID contins the r(ID) of the replying DRC, CMD becomes 0x58 by applying 0x40 Bitwise OR
operation to the Request Packet CMD 0x18,

Reply Condition
PLAY_ Buzz reply is sent when r(ACK Policy) is 2(Reply to all packets).Exception to this rule is when pID of the request

packet is 254(Broadcasting ID), in which case reply is not sent,

Example
B Reply to request packet to run Buzzer No, 5 in DRC with r(ID) 253,

Packet
oo 2 [0 | o0 | oo s o | ol

\VZI0:8 OxFF OxFF 0x09(9) OxFD 0x58 OxAC 0x52 0x00 0x00

Send current status and most recent error code.Both are 0x00 as there is no error.

Detailed Command Description — STAT

9—1. STAT — Request Packet(0x19)

Format

Value 0~0xFE 0x18

Request current status of DRC. DRC sends reply packet with r(Status Error) & r(Error Codes[0]) values included.

Example
B Reqguest packet to DRC with r(ID) 253 to perform STAT command.

Packet
Mﬂ---

A\VZIIW OxFF OxFF 0x07(7 OxFD 0x19 OxE2 Ox1C

9-2. STAT — ACK Packet(0x59)

Format

r(Status Er—
ror)

Value r(ID) 0x59 r(Error Codes[0])

Send reply packet with {Siatus Error) & r{Emor Codes[0]) values included., With Oplional Deta length fixed at 2 bytes, tolal Packet size is fixed at 9
bytes. pD coniins the r(D) of the replying DRC, CVID becomes 0x59 by applying Ox40 Biwise OR operation to the Reguest Packet CMD 0x19,

Reply Condition
Reply is sent to STAT request regardiess of r{ACK Policy). Reply is sent even if the pD of request packet is 254(Broadcasting ID).

Exampe
B Reply to request packet to DRC with r(ID) 253 to perform STAT command.

Packet
= e 2 [0 | o [o0 | s o | ot

A\VZ|[I:M OxFF OxFF 0x09(9) OxFD 0x59 OxAC 0x52 0x00 0x00

Send current status and most recent error code.Both are 0x00 as there is no error.

. 237

Detailed Command Description — ROLLBACK

10—1. ROLLBACK — Request Packet(0x1A)

Format

Item Packet Size pID CMD Data[0] ETEIR]

Value 7+2 0~OxFE Ox1A ID Skip Baud Skip

Initialize Non—\Volatile register using the factory default values saved in DRC. Initialized Non—\olatile will affect the operation
after DRC has been rebooted or power turned off and back on. ID Skip and Baud Skip in Data[0] & Data[1] determines
whether e(ID) & e(Baud Rate) will be exempt from initialization.When ID Skip is 1, e(ID) will not be initialized and when Baud

Skip is 1, e(Baud Rate) will not be initialized.

Example
B Request packet to DRC r(ID) 253 to initialize Non—\olatile registers except for (D).

Packet
e (T e Lo L

OxFF OxFF 0x09(9 OxFD Ox1A OxEE 0x10 0x01 0x00

Reqguest packet will initialize the register with an exception of e(ID). ID Skip is 1, Baud Skip is O.

B Request packet to DRC r(ID) 253 to initialize register with exceoption on e(ID) & e(Baud Rate).

Packet
e |72 | o a0 | oo | s o | ot

\ZIIEN OxFF OxFF 0x09(9) OxFD Ox1A OxEE 0x10 0x01 0x01

Request packet will initialize the register with exception of e(ID) & e(Baud Rate). ID Skip is 1, Baud Skip is 1.

10—2. ROLLBACK — ACK Packet(0x5A)

Format

Value r(ID) 0x5A r(Status Error) r(Error Codes[0])

Send reply packet with r(Status Error) & r(Error Codes[0]) values included. With Optional Data length fixed at 2 bytes, total

Packet size is fixed at 9 bytes. pID contins the r(ID) of the replying DRC, CMD becomes 0x5A by applying 0x40 Bitwise OR

operation to the Request Packet CMD Ox1A.

Reply Condition

ROLLBACK reply is sent when r(ACK Policy) is 2(Reply to all packets).Exception to this rule is when pID of the request

packet is 254(Broadcasting D), in which case reply is not sent,

Example
B Reply to request packet to DRC r(ID) 253 to initialize Non—\olatile registers except for e(ID).

ltem Header Pasfz';et pID CMD cs1 CS2 Data[0] | Datal1]
OXFF OxFF 0x09(9) OxFD O0x5A OXAE 0x50 0x00 0x00

Send current status and most recent error code.Both are 0x00 as there is no error,

239

Detailed Command Description — REBOOT

11—1. REBOOT — Request Packet(0x1B)

Format

Value 0~0xFE 0x1B

Request packet to DRC requesting SW reset. When DRC receives this packet, it will reset itself and start initial booting sequence.

Example

Packet
Mﬂ---

A\ OxFF OxFF 0x07(7 OxFD 0x1B OxEO Ox1E

11-2. REBOOT — ACK Packet(0x5B)

Value r(ID) 0x5B r(Status Error) r(Error Codes[0])

Send reply packet with r(Status Error) & r(Error Codes[0]) values included. With Optional Data length fixed at 2 bytes, total
Packet size is fixed at 9 bytes. pID contains the r(ID) of the replying DRC, CMD becomes 0x5B by applying 0x40 Bitwise
OR operation to the Request Packet CMD Ox1B.,

Reply Condition
REBOOT reply is sent when r(ACK Policy) is 2(Reply to all packets).Exception to this rule is when pID of the request packet

is 254(Broadcasting ID), in which case reply is not sent.

Example

Packet
e [T e e L L

A\ OxFF OxFF 0x09(9 OxFD 0x5B OxAE 0x50 0x00 0x00

Send current status and most recent error code. Both are 0x00 as there is no error.,

240 prE

Detailed Command Description — ZIGBEE

12—1. ZIGBEE — Request Packet(0x1C)

Format

Value 0~0xFE 0x1C Instruction

Request packet with commands related to conrolling the Zigbee module attached to DRC. Depending oh the instruction,
ZIGBEE is divided into 6 commands which perfom different function according to the Instruction.
There are 5 types (total 8 bytes) of Zighee related registers in the Volatile register map, r(Zigbee PANID), r(Zigbee SADDR),
r(Zigbee DSTADDR), rlZigbee ACKREQ), r(Zighee BACKOFF). Each register corresponds to the property values saved in
the Zigbee module, Communication using Zigbee cannot be wired and wireless at the same time,
B When Instruction is O, Zigbee module property values are read to the Volatile register.

When Instruction is 1, Property values in Volatile register are replaced with property values in Zigbee module .

When Instruction is 2, Proerty values in Zigbee module are intialized to factory default values.

[

[

B When Instruction is 3, Zigbee module is reset,

B When Instruction is 4, Change to wired communication mode (Using connection cable and COM PORT).
[

Instruction is 5, Change to wireless communication mode (Wireless communication using Zigbee).

Example
B Request packet to read Zigbee property values from DRC with r(ID) 253,

Packet
e T e e

\VZ1I8 OxFF OxFF 0x08(8 OxFD 0x1C OxE8 0x16 0x00

Instruction is O; reading property values from the module to the RAM.

B Reguest packet to change the Zigbee module values to factory value from DRC with r(ID) 253,

Packet
e |72 | o a0 | o | s | own

\VZI0E8 OxFF OxFF 0x08(8) OxFD 0x1C OxEA 0x14 0x02

Instruction 2; Initialize Zigbhee module property values to factory default.

B Request packet to change the DRC with r(ID) 253 to wireless communication mode.,

Packet
e R e e

A\VZIIEW OxFF OxFF 0x08(8 OxFD 0Ox1C OxEC 0x12 0x05

Instruction 5; Change communication mode to wireless

12-2. ZIGBEE — ACK Packet(0x5C)

Format

O T

Value r(ID) 0x5C Success r(Status Error) r(Error Codes[0])

ZIGBEE reply packet carries value of ‘Success' field in Data[0]. ‘Success' field in reply packet shows whether the command
sent by the request packet was successfully carried out. Success value is 1 when the Zigbee coomand was successiul,
value is O if the command failed due to communication error or because Zigbee module was not installed. r(Status Error)
& r(Error Codes|0]) values are included in the Optional Data. As Optional Data size is fixed at 3 bytes, total Packet Size is
10 bytes. pID conatins the r(ID) of the replying DRC, CMD becomes 0x5C by applying 0x40 Bitwise OR operation to the
Request Packet CMD 0x1C.

Reply Condition
CON_CHECK reply is sent when r(ACK Policy) is 1(Reply to only Read command), 2(Reply to all packets).Exception to this

rule is when pID of the request packet is 254(Broadcasting ID), in which case reply is not sent.

Example
B Reply to request packet to read Zigbee prperty values from DRC with r(ID) 253 (Zibee installed).

Packet
v | escer | Pt | o> | o> | st | Cs2 | alol | ostal | a2

\ZIIEY OxFF OxFF OxO0A(10) OxFD 0x5C OxAA 0x54 0x01 0x00 0x00

Success value is 1 since Zigbee was installed and communication was successful.

242 uEE

Example
B Reply to request packet to initialize Zigbee to factory defalut values from DRC with r(ID) 253 (Zigbee installed).

Packet
o= e B [0 o0 | s vkl i ona

A1 OxFF OxFF 0x0A(10) OxFD 0x5C OxAA 0x54 0x01 0x00 0x00
Zigbee initialized to factory default values, Success value is 1.

B Reply to request packe to change DRC with r(ID) 253 to wireless mode (Zigbee not installed).

Packet
e |72 | 0 o s | oo ot

\VZII:M OxFF OxFF OxOA(10) OxFD 0x5C OxAA 0x54 0x00 0x00 0x00

Mode change failed since Zigbee is not installed, Success value is O.

. 243

Detailed Command Description — REMOCON
13—1. REMOCON - Request Packet(0x1D)

Format

Value 0~0xFE 0x1D Channel Length Data

IR remote control can be used to send control commands when IR receiver is attached to DRC. However, when IR remote
control is not available or when in wireless communication mode using Zigbee, request packet with REMOCON command
can be used control the DRC. Remote control Channel(0x61~0x6A) goes in Data[0], remote control button press Length
(0~240, 1= 125ms) in Data [1], and remote control button key data in Data[2]. When DRC receives remote control value,
Channel is compared with r(Remocon Channel). If they are found to match, r(Remocon Length) & r(Remocon Data) values
are changed to Length & Data for 250ms. r(Remocon Length) & r(Remocon Data) values are changed back to 0 & 254

after 250ms. When using REMOCON request packet, it is recommended to increase the Length value by 1 every 125ms.

Example

B Request packet notifying all DRC(Broadcasting) button 0x21 using channel Ox61has been presse for 1s

Packet
mn--- a0 | Dael] | oael2)

\ZIICW OxFF OxFF 0x0A(10) OxFE 0x1D Ox5E 0x61 0x08 0x21

pID is OXFE since packet is being sent to all DRCs. Since channel is Ox61, Data[0] value is Ox61.Since 1unit=125ms, 1s = 8

units. Data[1] has value of 8 and Data [2] has remote control key value of 0x21.

13—-2. REMOCON — ACK Packet(0x1D)

REMOCON command does not have reply packet.

Detailed Command Description — SERVO_FW_UPDATE

14—-1, SERVO_FW_UPDATE - Request Packet(Ox1E)

Format

EIC IR

Value 0~0xFE ox1z

Request packed used to update the servo (Firmware) connected to DRC. Since servo firmware update rquires special
protocol, SERVO_FW_UPDATE request packet has to be sent to enter special update mode. While in special update mode,

there is no communication between the PC and the DRC and unit behaves as if PC and the servos are connected directly.

Example

B Request packet to change the DRS with r(ID) 253 to servo firmware update mode.

Packet
e | esser | P | o0 | ow | os1 | o

\ZIEY OxFF OxFF 0x09(9) OxFD Ox1E OxE4 Ox1A

14-2. SERVO_FW_UPDATE — ACK Packet(0x5E)

Format

o e | en

Value g% Ox5E r(Status Error) r(Error Codes[0]) 0xA0

Send reply packet with {Siatus Enor) & rEmor Cades[0)) values induded, Wih Optioral Deta length fixed at 2 bytes, total Packet size is fixed at 9 bytes,
pD coniains the D) of the replying DRC, VD becomes OxEE by applying Ox40 Biwise OR operaion to the Request Packet C\VD OXIE.

Reply Condition
SERVO_FW_UPDATE reply is sent when r(ACK Policy) is 2(Reply to all packets).Exception to this rule is when pID of the

request packet is 254(Broadcasting ID), in which case reply is not sent.

Example
B Reply to request packet to change the DRS with r(ID) 253 to servo firmware update mode.,

Packet
e [Lon Lo | Lo |

\"ZIICW OxFF OxFF 0x09(9) OxFD Ox5E 0x54 0x00 0x00

Send current status and most recent error code. Both are 0x00 as there is no error,

. 245

3 DRC Register & Protocol HOVIS

Apendix

Appendix

ADC Lookup Table — \oltage

Decimal HEX Decimal HEX Decimal HEX Decimal HEX

0 0 0.000 64 40 4722 128 80 9.444 192 CO 14.167
1 1 0.074 65 a4 4.796 129 81 9.518 193 C1 14,240
2 2 0.148 66 42 4.870 130 82 9.592 194 Cc2 14.314
3 3 0.221 67 43 4944 131 83 9.666 195 C3 14.388
4 4 0.295 68 a4 5.017 132 84 9.740 196 C4 14.462
5 5 0.369 69 5.091 133 85 9.813 197 C5 14.536
6 6 0.443 70 5165 134 86 9.887 198 C6 14,609
7 7 0.516 Ul 47 5239 135 87 9.961 199 C7 14.683
8 8 0.590 72 48 5313 136 88 10.035 200 C8 14.757
9 9 0.664 73 49 5.386 137 89 10.109 201 C9 14.831
10 A 0.738 74 4A 5.460 138 8A 10,182 202 CA 14.905
1 B 0.812 75 4B 5534 139 8B 10.256 203 CB 14.978
12 C 0.885 76 4C 5608 140 8C 10.330 204 CC 15.052
13 D 0.959 77 4D 5.681 14 8D 10.404 205 CD 15,126
14 E 1.033 78 4E 5.755 142 8E 10.477 206 CE 15,200
15 F 1107 79 AF 5.829 143 8F 10.551 207 CF 15,273
16 10 1.181 80 50 5903 144 90 10.625 208 DO 15,347
17 11 1.254 81 51 5977 145 91 10.699 209 D1 15.421
18 12 1.328 82 52 6.050 146 R 10.773 210 D2 15,495
19 13 1.402 83 53 6.124 147 93 10.846 211 D3 15,569
20 14 1.476 84 54 6.198 148 94 10.920 212 D4 15.642
21 15 1549 85 55 6.272 149 95 10.994 213 D5 15,716
22 16 1.623 86 56 6.345 150 96 11.068 214 D6 15,790
23 17 1.697 87 57 6.419 151 97 114 215 D7 15.864
24 18 1.771 83 58 6.493 152 98 1.215 216 D8 15.938
25 19 1.845 89 59 6.567 153 99 11.289 217 D9 16.011
26 1A 1918 90 5A 6.641 154 9A 11.363 218 DA 16.085
27 1B 1992 £l 5B 6.714 155 9B 11.437 219 DB 16.159
28 1C 2.066 92 5C 6.788 156 9C 11.510 220 DC 16.233
29 1D 2140 93 5D 6.862 157 9D 11.584 221 DD 16.306
30 1E 2214 94 5E 6.936 158 9E 11.658 222 DE 16.380
31 1F 2287 95 5F 7.010 159 9F 1.732 223 DF 16.454
32 20 2.361 9% 60 7.083 160 AO 11.806 224 EO 16.528
33 21 2435 97 61 7157 161 Al 11.879 225 = 16.602
34 22 2,509 98 62 7.231 162 A2 11.953 226 E2 16.675
35 23 2.582 9 63 7.305 163 A3 12.027 227 E3 16.749
36 24 2656 100 64 7.378 164 Ad 12,101 228 E4 16.823
37 25 2.730 101 65 7452 165 A5 12174 229 E5 16.897
33 26 2.804 102 66 7526 166 A6 12.248 230 E6 16.970
39 27 28718 103 67 7.600 167 A7 12.322 231 E7 17.044
40 28 2,951 104 68 7674 168 A8 12.396 232 E8 17.118
4 29 3.025 105 69 7.747 169 A9 12.470 233 E9 17192
a2 2A 3.09 106 6A 7.821 170 AA 12543 234 EA 17.266
43 2B 3.173 107 6B 7.895 171 AB 12.617 235 EB 17.339
44 2C 3.247 108 6C 7.969 172 AC 12,691 236 EC 17.413
45 2D 3.320 109 6D 8.043 173 AD 12.765 237 ED 17.487
46 2E 3.394 10 6E 8.116 174 AE 12.839 238 EE 17.561
a7 2F 3468 m 6F 8190 175 AF 12912 239 EF 17.635
48 30 3542 12 70 8264 176 BO 12.986 240 FO 17.708
49 31 3.615 13 Ul 8.338 177 B1 13.060 241 F1 17.782
50 32 3.639 14 72 8.41 178 B2 13134 242 F2 17.856
51 33 3.763 15 73 8.485 179 B3 13.207 243 F3 17.930
52 34 3.837 116 74 8559 180 B4 13.281 244 F4 18.003
53 35 391 17 75 8.633 181 BS 13.355 245 F5 18.077
54 36 3.984 18 76 8707 182 B6 13.429 246 F6 18.151
55 37 4.058 19 77 8780 183 B7 13.503 247 F7 18.225
56 33 4132 120 78 8.854 184 B8 13.576 248 F8 18.299
57 39 4,206 121 79 8928 185 B9 13.650 249 F9 18.372
58 3A 4.280 122 7A 9.002 186 BA 13.724 250 FA 18.446
59 3B 4.353 123 B 9.076 187 BB 13.798 251 FB 18.520
60 3C 4.427 124 7C 9.149 188 BC 13872 252 FC 18,594
61 3D 4.501 125 7D 9.223 189 BD 13.945 253 FD 18.668
62 3E 4575 126 7E 9.297 190 BE 14.019 254 FE 18.741
63 3F 4,648 127 F 9.371 191 BF 14.093 255 FF 18815

246 pEEEE

ADC Lookup Table — Temperature
VIN
HEX HEX

Decimal HEX Decimal Decimal Decimal HEX

0 0 -80.57 64 40 -1.34 128 80 25.00 192 CO 56.99
1 1 —72.89 65 | -0.89 129 81 254 193 C1 57.67
2 2 —64.26 66 a2 —0.44 130 82 25.82 194 C2 58.36
3 3 —58.84 67 43 0.01 131 83 26.24 195 C3 59,05
4 4 -54.80 68 44 0.46 132 84 26.65 196 C4 59.76
5 5 —51.55 69 45 0.90 133 85 21.07 197 C5 60.48
6 6 —48.81 70 46 134 134 86 2749 193 C6 61.21

7 7 —46.43 n a7 178 135 87 2191 199 C7 61.96
8 8 —44.32 72 48 221 136 88 28.33 200 C8 62.71

9 9 —42.41 73 49 264 137 89 28.75 201 C9 63.48
10 A —40,68 74 AA 3.07 138 8A 2918 202 CA 64.27
1 B —39.08 75 4B 3.50 139 8B 29,60 203 CB 65.06
12 C —37.59 76 4C 393 140 8C 30.03 204 CcC 65.88
13 D -36.20 7 4D 435 141 8D 30.46 205 CD 66.71

14 E —34.89 78 4E a77 142 8E 30.89 206 CE 67.55
15 F —33.66 79 aF 519 143 8F 31.32 207 CF 68.41

16 10 —32.49 80 50 5,61 144 90 31.76 208 DO 69.29
17 1 —31.37 81 51 6.03 145 Ell 32.20 209 D1 70.19
18 12 —30.31 82 52 6.45 146 R 32.64 210 D2 7

19 13 —29.29 83 53 6.86 147 93 33.08 21 D3 72.05
20 14 —28.31 84 54 7271 148 94 33.52 212 D4 73.01

21 15 —27.36 85 55 7.68 149 95 3397 213 D5 74.00
22 16 —26.45 86 56 8.09 150 9% 34.42 214 D6 75,01

23 17 —2557 87 57 850 151 97 34.87 215 D7 76.04
24 18 —24.72 88 53 891 152 93 35.33 216 D8 7710

25 19 -23.89 89 59 9.32 153 9 35.78 217 D9 7819
26 1A —23.09 90 5A 9.72 154 9A 36.24 218 DA 79.31

27 1B —22.31]l 5B 10.13 155 9B 36.71 219 DB 80.46
28 1C —21.54 9R2 5C 10.53 156 9C 3717 220 DC 81.65
29 1D —20.80 983 5D 10.94 157 9D 37.64 221 DD 82.87
30 1E —20.08 94 5E 1.34 158 9E 3311 222 DE 8413
31 1F —19.37 95 5F 1.74 159 oF 3859 223 DF 85.44
32 20 —-18.68 96 60 1214 160 AO 39.07 224 EO 86.78
33 21 -18.00 97 61 12.55 161 Al 3955 225 El 88.17
34 22 —17.34 98 62 12.95 162 A2 40,04 226 E2 89,62
35 23 —-16.69 99 63 13.35 163 A3 40.53 227 E3 9112

36 24 -16.05 100 64 13.75 164 Ad 402 228 E4 967
37 25 —15.42 101 65 1415 165 A5 4152 229 ES 94,29
38 26 —14.81 102 66 14.54 166 A6 42,02 230 E6 95,98
39 27 —14.20 103 67 14.94 167 A7 4252 231 E7 97.75
40 28 —-13.61 104 68 15.34 168 A8 4303 232 E8 99,59
M 29 —-13.02 105 69 15,74 169 A9 4355 233 E9 101.53
42 2A —12.45 106 6A 16.14 170 AA 44.07 234 EA 103.57
43 2B —11.88 107 6B 16.54 171 AB 44,59 235 EB 105.71
a4 2C -1.32 108 6C 16.94 172 AC 4512 236 EC 107.98
45 2D —10.76 109 6D 17.34 173 AD 4565 237 ED 110.38
46 2E —10.22 10 6E 17.74 174 AE 46,19 238 EE 12,93
a7 2F -9.68 1 6F 18.13 175 AF 46.74 239 EF 115,65
48 30 -915 12 70 1853 176 BO 4729 240 FO 11857
49 3 -8.62 13 n 18.93 177 B1 4784 241 F1 12172
50 32 —8.10 14 72 19.33 178 B2 4840 242 F2 12512
51 33 —759 15 73 19.73 179 B3 4897 243 F3 128,83
52 34 —7.08 116 74 2013 180 B4 49,54 244 F4 132.89
53 35 —6.58 17 75 20.54 181 B5 50.12 245 F5 137.38
54 36 —6.08 118 76 20,94 182 B6 50.71 246 F6 142.40
55 37 -5.59 19 77 2134 183 B7 51.30 247 F7 148,06
56 38 -5.10 120 78 2174 184 B8 51.90 248 F8 154.56
57 39 —4.62 121 79 2215 185 B9 52.51 249 FO 162.13
58 3A —4.14 122 7A 2255 186 BA 53.13 250 FA 17118
59 3B —3.66 123 B 22.96 187 BB 53.75 251 FB 182,34
60 3C -3.19 124 7C 23.36 183 BC 54.38 252 FC 196.72
61 3D —2.72 125 7D 2377 189 BD 55,02 253 FD 216.58
62 3E —2.26 126 7E 2418 190 BE 55.67 254 FE 247.46
63 3F -1.80 127 F 2459 191 BF 56.33 255 FF 310.08
63 3F 4648 127 7F 9.371 191 BF 14.093 255 FF 18.815

I 247

Error Code Detailed Description

L 0x01 \oltage too low
Exceed Input Voltage limit -
0x02 \oltage too high
Exceed Temperature limit 0x03 Temperature too high
L Ox11 No reply from servo while reading servo register during self check mode.
Servo Missing
0x12 No reply from servo while reading servo register during Task execution.
0x21 Wrong model name in EEPROM
EEP REG distorted 0x22 Wrong EEPROM ID
0x23 EEPROM data corrupt
0Ox31 Servo status error

0x32 DRT-HWWI1 status error

0x33 Too many servos connected to DRC

0x34 DRC—004TO0 status error

0x41 Zigbee Ack not received properly or Noise interference received

0x42 Check Sum Error in Zigbee Ack

0x43 Unknown Command in Zigbee Ack

0x44 Received Zigbee Ack but ID is not OXFC

0x45 Packet size received in Zigbee Ack too large

0x46 Packet size received in Zigbee Ack incompatiable with command

ox47 Zigbee Ack not received

0x51 Packet received in Zigbee Ack incomplete or Noise interference received

0x52 Check Sum Error in Servo Ack

0x53 Unknown Command in Servo Ack

0x54 Invalid ID packet received in Servo Ack

0x55 DRT-HWW!1 related command received from Servo Ack but ID is not OXFB

0x56 Packet size received in Servo Ack too large

0x57 Packet size received in Servo Ack incompatiable with command

0x58 UART Buffer receiving packet in Servo Ack is full

0x59 Buffer for saving packet to be sent to Servo is full

Ox5A SDRC—-004TO related command received from Servo Ack but ID is not OXFA
Invalid Packet 0x61 Packet received by PC incomplete or Noise interference received

0x62 Check Sum Error in packet received by PC

0x63 Unkown Command in packet received by PC

Ox64 Invalid ID packet received by PC

0x65 DRT—004TO related command received from PC packet but ID is not OXFB

0x66 Packet size received by PC too large

0x67 Packet size received by PC incompatiable with command

0x68 UART Buffer receiving packet by PC is full

0x69 DRC—-004TO related command received from PC packet but ID is not OXFA

0x71 EEP/RAM WRITE/READ command beyond register range

0x72 Incorrect value used in RAM_WRITE

0x73 Incorrect value used in RAM_WRITE Status

0x74 Incorrect ID in CON_CHECK packet

0x75 Incorrect motion number in PLAY_MOTION

0x76 Incorrect instruction in PLAY_TASK

Ox77 Incorrect Channel or Length in REMOCON

0x78 Incorrect instruction in ZIGBEE

0x79 Incorrect buzzer number in PLAY_BUZZ

Servo Status Error

248 I

Error Code Detailed Description

Status Error Flag

Flash Data Distorted

Error Code

0x81

0x82
0x83
0x84
0x85
0x91

0x92
0x93
0x94
0x95
0x96
0x97
0x98
0x99
Ox9A
0x9B
OxA1
OxA2
OxA3
0xA4
O0xA5
0xA6
OxA7
OxB1

0xB2

Description

Trying to run non existing Motion

Problem with Motion data

Number of axis in Motion data different than actual number of axis
Frame with negative time to next frame

Too many Repeat commands stacked (Maximum 3)
Problem with Task data

Error while performing arithmetic operation

Program stack overflow

Incorrect register address while loading MPSU RAM
Incorrect register length while loading MPSU RAM
Incorrect register address while loading Servo RAM
Incorrect register length while loading Servo RAM
Incorrect ID while loading Servo RAM

Incorrect register length while reading MPSU RAM
Incorrect register length while reading Servo RAM
Incorrect ID while reading Servo RAM

Value in Motion command beyond range

Value in Motion Ready beyond range

Value in Servo control command beyond range
Head LED command value out of range

Value in DRC LED command beyond range

Vlaue in Buzzer melody command beyond range
Value in Buzzer note command beyond range
Trying to run non existing head LED

Trying to play non existing Buzzer

249

s Useful Info

Apendix

Troubleshooting

Firmware Update
Example Explanation

HOVIS

Help

Inde:x

Online Help
AW Update
FA pdate

01 Help) Firmware Updae

Update controller firmware through DR—Visual
Logic.,

With the controller connected to the PC.,

Help) Click firmware update.

s Useful Info

Apendix

Checks robot to see if it was assembled correctly/exactly and makes adjustment if necessary. If the robot was not

assembled correctly, it may cause error or unwanted movement,

Click ‘Robot Control’ in DR—SIM to adjust the position of the robot motors.

Calibration (0 point Adjustment)

HOVIS

Tu:-rque-miaﬂ Fose ||:.mm|ﬁmh' hotion Blay Stop

oo o | _ Seting |

Torque (ML) Pose Covm Mgk btion
Disconneet Il-q-] . Sefting |

Motion Download ' Dowricad m

FOLDER EdDoeurments and Setling swskangl! A

[Reference]

= Mofion data is laded autoraticaly from the selecied folder

— When Download’ button & clicked, motian data in ihe controller is rewritien based on he dsta in the motion edior,
= 'Load’ button leads the current motion data in the controller

= When ‘Start’ bution is clicked, robot wil executs the selected molion data thiough e controlier,

= Robol may restart itsef automaticaly during the data transmission between the molion edior and the controler,

01 Connect

Connect to robot,
Click Connect.

02 Robot Control

Turn on power,

Click Torque On.

Calibration is done in Robot Control.
Click Robot Control.

03 Posture Adjustment

Robot control window is divided into motion

download and posture adjustment,
Click Posture Adjustment

251

‘ Y Botnt Covrtrcd ‘.:'::

Pose Calibration Downioas || Adust poss

Clicking Posture Adjustment will show current calibrantion values.
Compare with the actual robot and adjust the calibration values.

Calibration value range is from —128 ~ 127. Use the Up/Down button to change the values and notice the actual robot making
slight movements,

252

Rebnt Cotrol

Pose Calibration Downioad || Adust pose

Check the robot to view the adjustments being made and click Apply when the correct setting is achieved.
Press Apply to save the adjustment to the robot. Robot will show adjusted values when connected.

253

Checks robot to see if it was assembled correctly/exactly and makes adjustment if necessary. If the robot was not

assembled correctly, it may cause error or unwanted movement,

Click ‘Robot Control’ in DR=SIM to adjust the position of the robot motors,

01

e

U Click Robot Control) Posture Adjustment button.
: ' When the posture adjustment window opens up,
lift up the robot and check the assembly.

Apply

02

-: View the robot directely from the front and adjust
the leg balance.

* Square boxes apply to 18 axis and 20 axis robots,

Apply

(After)

03

g= Make adjustments so that both feet are flat on the
E ground.

Apply

Pose Galibration Cownioan | Adus pose 04

View the robot from the side and adjust the vertical
angle.

Apply

{Before)

255

Apply

256

Apply

05

View the robot from the top and adjust the arms
to form straight line.

06

Adjust the waist and head for 20 Axis robot,

07

Make further necessary adjustments and end the
calibration,

s Useful Info HOVIS

Apendix

Changing the Motor ID

Since DRC identifies each motor by the motor ID number, it is important to place each motor in correct position according to
the ID when assembling the robot, However, if the motor was incorrectly positioned or if the robot is being reassembled from
16 axis to 18 or 20 axis robot, motor ID change will be necessary,

B Make sure to change the motor ID prior to reassembling the robot from 16 axis to 18 or 20 axis.
B Follow the steps below to change the motor ID if the motors were positioned incorrectly during the assembly,
ex) Position of the motors ID 9 and 10 were switched.
ID 9 — ID100 (Motor ID 20 to 254 are spare ID.)
D10—1ID9
ID 100 — ID 10

Example shown below uses HerkuleX Manager program to change the motor ID 253 to ID 15.
(HerkuleX Manager prgogram can be downloaded from Dongbu Robot website.)

http://www.dongburobot.com/jsp/cms/view.jsp?code=100122

Standard set-up| Motor test | Detaled set-up | 0 ebug n etting O 1

He uieX Moot |(Easic I ntormation) Connect the motor to the controller (DRC) and run
_ the HerkuleX Manager program. Setup the COM
Go o the DongbsRobot home page o download and insal h aest versin, (ECED) Port and click Connect button,

@ Com set-up

Click the ‘Environment buton to chiange the Com set-up values

@ Ciick the ‘Connect’ o the selected the 'ID Scan'to scan
and view information on scanned motor.
~When Cancef bution i cl D Seart, inthe molor st
= Selecting the 'Servo Motor' rom the list will renew the information

VinEor

Positon initEror| TempEror | PacketEror | OvrbadEror | DiverEnor | EEPEor

Ipos | MTRON

CHKSUM Eror_| CMD Cade Eror | ADDR Eror | 686 Defect Eror | Moving |

257

L& HerkuleX Manager - o X

02

come Diacomect
Herkulex

[ID : 000] DRS-0101

[ID : 001] DRS-0101

[ID : 002] DRS-0101

[ID : 003] DRS-0101

[ID : 002] DRS-0101
[ID : 005] DRS-0101
[ID : 006] DRS-0101
[ID: 007] DRS-0101
[ID - 008] DRS-0101 (1) v

[ID - 009] DRS-0101

offse Min Max Threshoid
0 1023 1022

Motor connected to the controller (DRC) shows
up in the left window when Connect button is

e o o clicked. Click [ID: 253] DRS—0101 to change the
D01 s on e o oo s owens (R motor ID 253 to 15. Next, click on basic proper—
N Filr @ ties and then use the scroll bar to position the
ID&Policy window so that it becomes visible.

[T117

o Calibration CHEDED

Difference 15 (CN)-123) Setin

LED
Policy
|

Toraue
Policy.

" Status VnEror Posiion LimitError| Temp Enor | PadketEnor | Oveoad Efor | Dibe Enor | EEP Eror

CHKSUM Error_| OMD Code Enor | ADDR Evor | GBG DetectEnor | Mo | lpos | MTRON

Connected - COMG, Baud Rate 11

L HerkuleX Manager

R ——— g 03

Herkulex
B Offset Min Max Threshold
ID : 001] DRS-0101
[ID : 002] DRS-0101 0 0 1023 1022
ID : 003] DRS-0101 m

[ID : 004] DRS-0101
[ID 005] DRS-0101
ID : 006] DRS-0101
[ID: 007] DRS-0101
[ID : 008] DRS-0101 [+

[ID - 009] DRS-0101

Enter desired value in Servo ID (value is 15 in this
example) and then click Setup. Motor ID scan will
run automatically when Setup is clicked.

[ID : 010] DRS-0101 P P © 1D & Policy
D : 011] DRS-0101 © Fault Check ["save | Load |
e g ADC LED GBG stop Overioad | MELUCHD]

D : 013] DRS-0101
D : 014] DRS-0101 sk @
[ID : 253] DRS-0101 | i 2 I

1

Torque [Vin E
Policy

45 a5 18 27 150

ok ol mokors o Calibration [ctear ['sove [toa |

IDScan Difference 15 (CN)123) Setting

adcast

Status VnEmor Positon LimitError, Temp Etor | PacketEnor | Owerboad Enor | D Emor | EEP Emor

Clear [5 GHKSUMEror_| CMDCode Enor | ADDR Eror | GBG DelectEor | Miovig

L% HerkuleX Manager

04

coms

Herkulex
[ID : 000] DRS-0101 Offset Min Max Threshold
[ID : 001] DRS-0101
0 0 1023 1022

[ID : 002] DRS-0101
[ID : 003] DRS-0101

[ID : 004] DRS-0101 M
[ID : 005] DRS-0101
[ID : 006] DRS-0101
[ID: 007] DRS-0101 [
& v

[ID : 008] DRS-0101
[ID : 009] DRS-0101
[ID: 010] DRS-0101

ID: 011] DRS-0101 e LCHaeld [(save ['load]

[ID: 012] DRS-0101 ADC LED GBG Stop Overload
[ID: 013] DRS-0101
o o 45 a5 18 27 150

Lo [W |
W Checkal nowrs o Calibration {(Clear] Save | Load |

lo
1DScan Difference 15 (CN){123) &D

ID scan will show that Motor ID has changed from
253 10 15. As the last step, click [ID: 015]DRS—0101
and then click Save button to save the changed
motor ID. (Changed motor ID shown by the ID
Scan is from the changed RAM Register value
which looses its data when power is turned off.
oy W W Clicking the Save button will save the changed

Motor ID in EEP Register which retains data even
when the power is turned off.)

B Brosdcast [HexView

VnEror Posion LimitError, Temp ror | PacketEnor | Overoad Efor | Dibeer Enor | EEP ror

CHKSUM Error_| OMD Code Enor | ADDR Evor | GBG DetectEror | Mo | lpos | MTRON

05

Disconnect and reconnect power on motor, Then
run ID SCAN through HerkuleX Manager to varify
the ID of motor,

258 |

Learn algorithm and robot control using
graphic programming tool Visual Logic.

PART O1. Donbu Robot DRC & HOVIS

PART 02, DR-Visual Logic Programming (
N A

PART 03, Learning Visual Logic Related
C Language Grammar

Appendix

788998
ISBN 978-89-98873-10-3

873103

Dongbu Robot 9

93550

